QUIVERS

When working with algebras it is convenient to understand the concepts of quivers and relations.

Definition 1. A quiver Q is a directed graph $Q = (Q_0, Q_1, t, h)$ where:

- Q_0 set of vertices
- Q_1 set of arrows
- $t: Q_1 \to Q_0$ assigns the tail of the arrow
- $h: Q_1 \rightarrow Q_0$ assigns the head of the arrow

We now wish to understand representations of quivers.

Definition 2. A representation \underline{V} of a quiver Q, over a field k, assigns a vector space $V(i)$ to each $i \in Q_0$ and a transformation $\varphi_{\alpha}: V(i) \to V(j)$ for each $\alpha \in Q_1$.

PATH ALGEBRAS

A path from e to f, for $e, f \in Q_0$, is a sequence of the form $(e | \alpha_1 | \cdots | \alpha_l | f)$ with $\alpha_i \in Q_1$ and

We denote a path of length zero by $(e | e)$.

The path algebra kQ of the quiver Q is defined as the k-vector space with basis Q_1 . The product in kQ is by path concatenation, when it makes sense, and zero otherwise.

Remark 1. Fact: kQ is finite-dimensional if and only if Q_0 and Q_1 is finite and there are no cyclic paths.

Theorem 1 (Gabriel). Any basic finite-dimensional k-algebra A, is of the form kQ/I for a unique quiver Q and ideal I.

Basic Algebras

Definition 3. We say that a finite-dimensional k-algebra A , is a *basic algebra* if all simple A -modules are 1-dimensional.

Here are some remarks:

Remark 2. Given any arbitrary finite-dimensional k-algebra A, the quiver Q describing the basic algebra may be found as follows:

- (1) Q_0 is identified with the collection of isomorphism types of simple A-modules.
- (2) Q_1 the arrows $i \to j$ in number is given by $\dim_k \operatorname{Ext}^1(s_i, s_j)$.

Representation Type

Suppose k is an infinite field and A is a finite-dimensional k -algebra. Then A

- (1) is of finite representation type if there are only finitely many isomorphism classes of indecomposable A-modules.
- (2) is of tame representation type if the indecomposable A-modules can be parameterized by a 1 paraameter subgroup.
- (3) is of wild representation type if its module category is comparable with $k\langle x, y\rangle$ -Mod.

Here are some examples of quivers:

Example 1. Quiver with three arrows

$$
\bullet\Longrightarrow\bullet
$$

Example 2. Two-loop Quiver

2

•) i

Let $I = \langle \alpha \gamma - \beta \delta \rangle$. The algebra $\frac{kQ}{I}$ is wild.

Theorem 2 (Drozd, Crawley-Boevey). Over an algebraically closed field, every finite-dimensional algebra is of finite type, tame, or wild, and these types are mutually exclusive.

Theorem 3 (Baur, Kokorin, Mart'yanov). The theory of $k\langle x, y \rangle$ -modules of finite-dimension is undecidable.

Here are some properties:

If A is a finite-dimensional k -algebra, then

- (1) If I is some ideal such that A/I is wild, then A is wild.
- (2) If e is an idempotent such that eAe is wild, then A is wild.
- (3) A is wild if and only if its basic algebra is wild.
- (4) If A is wild, then $A^{\rm op}$ is wild.

Theorem 4 (Bondarenko, Drozd, Ringel). Let G be a finite group of order $p^{\alpha}q$ and k an infinite field of chracteristic p. If B is a block of kG and D a defect group of B , then B

- (1) is of finite type if D is cyclic.
- (2) is of tame type if $p = 2$ and D is a Sylow 2-subgroup of G that is
	- Dihedral

$$
\langle r, s \mid r^n = s^2 = 1, srs = r^{-1} \rangle
$$

• Semidihedral

$$
\langle r, s \mid r^{2^{n-1}} = s^2 = 1, srs = r^{2^{n-2}} - 1 \rangle
$$

• Generalized Quaternion

$$
\langle x, y \mid x^{2n} = y^4 = 1, x^n = y^2, y^{-1}xy = x^{-1} \rangle.
$$

Example 5. Consider an elementary 2-group $E = (\mathbb{Z}/2)^r$, and k an infinite field of chracteristic 2. Then

- (1) kE is of finite type if and only if $E = \mathbb{Z}/2$.
- (2) kE is of tame type if and only if $E = \mathbb{Z}/2 \oplus \mathbb{Z}/2$
- (3) kE is of wild type otherwise.