CHARACTERS

For some field k, we want to consider maps, $\chi : G \to k$ that are class functions. Note that any homomorphism $\chi: G \to k^*$ is a class function, that is constant on conjugacy classes, because k^* is abelian. In which case, we say that $\chi: G \to k^*$ is a *linear character*.

Example 1. Consider an *n*-dimensional algebraic torus $X = (\mathbb{C}^*)^n$. Then we're considering all of the algebraic group morphisms $\chi: X \to \mathbb{C}^*$, gives a free abelian Z-module of rank n.

Example 2. We can also consider $Y = GL_n(V)$ and all of the algebraic group morphisms $\chi: Y \to \mathbb{C}^*$. For example, det : $\text{GL}_n(\mathbb{C}^*)$. We denote the character group Y^* .

Remark 1. If $\chi: G \to \mathbb{C}^*$ is a linear character, then $\text{Tr}(g) = \text{Tr}(\chi(g)) = \chi(g)$.

Definition 1. Let G be a finite group and $\rho : G \to GL(V)$ be a representation. We say that

$$
\chi_V : G \longrightarrow k
$$

$$
g \longmapsto \text{Tr}(g) = \text{Tr}(\rho(g))
$$

is a character of the group G afforded by the representation.

Definition 2. Let G be a finite group of $#G = p^{\alpha}q$ and k of chracteristic p.

- (1) An element $g \in G$ is said to be *p-regular* if $(|g|, p) = 1$.
- (2) An element $g \in G$ is said to be *p-singular* if it's not *p*-regular.

Remark 2.

(1) If $m := \# \langle g \rangle = p^{\alpha} q$ with $p \nmid q$ and $1 = ap^{\alpha} + bq$, where $a, b \in \mathbb{Z}$. We say that

$$
g_{p'} = g^{ap^{\alpha}} \quad \text{and} \quad g_p = g^{bq}
$$

are the p-regular part and p-part of g, respectively.

- (2) $g = g^{ap^{\alpha}+bq} = g^{ap^{\alpha}} \cdot g^{bq} = g^{bq}g^{p^{\alpha}}$ and one sees that $g = g_{p'}g_q = g_qg_{p'}$.
- (3) We set $G_{p'}$ to be the set of p-regular elements of G. In this vein, we say that a conjugacy class is p-regular or p-singular according to its elements. We denote the p-regular conjugacy classes by $Cl(G_{p^{\prime}}).$

Lemma 1. Let k be an algebraically closed field of chracteristic p and G a finite group of $#G = p^{\alpha}q$. Then for all $\chi \in \text{Char}_k(G)$

$$
\chi(g) = \chi(g_{p'}).
$$

Proof. Suppose that $G = \langle g \rangle$. Let $\rho : G \to GL(V)$ be a representation and χ_V the chracter afforded by ρ. Note that $\rho(g) = \rho(g_{p'}) \rho(g_p)$. We may choosed a basis so that $\rho(g_{p'})$ and $\rho(g_p)$ are triangular matrices and $\rho(g_p)$ is unipotent, and thus only 1's on the diagonal. So, the diagonal elements of $\rho(g)$ and $\rho(g_{p'})$ coincide. □

Brauer Characters

Let p be a prime and $m \in \mathbb{N}$. Define

$$
U_{p'} = \langle \{ \zeta_\alpha \mid p \nmid \alpha \} \rangle \quad \text{ and} \quad U_{p',m} = \{ \zeta \in U_{p'} \mid \zeta^m = 1 \}
$$

where $\zeta_k = e^{2\pi i/\alpha}$.

Let G be a finite group with exponent $m = p^r q$, with $p \nmid q$, and F a field of chracteristic p with algebraic closure $\overline{\mathbb{F}}$. Suppose that W is an $\mathbb{F}G$ -module with $\dim_{\mathbb{F}} W = n$, and $\rho : G \to GL(W)$ a representation. Consider a ring homomorphism $\theta : \mathbb{Z}[\zeta_\alpha] \to \overline{\mathbb{F}}$. For $g \in G_{p'}$ the eigenvalues of $\rho(g)$ are mth roots of unity in F, and take the form $\theta(\zeta_1(g)), \ldots, \theta(\zeta_n(g)),$ where $\zeta_i(g) \in U_{p',m}$ are uniquely determined. We now define

$$
\phi_W: G_{p'} \to \mathbb{C}
$$

$$
g \mapsto \sum_i \zeta_i(g)
$$

and call this the Brauer chracter affored by W.

Definition 3.

- (1) If W is irreducible we say that ϕ_W is irreducible.
- (2) The set of irreducible Brauer chracters is denoted by $IBr(G)$.

Remark 3. **Fact:** If $p | #G$, then $IBr(G) = Irr(G)$.

p-Modular Systems

Let $\rho: G \to \text{GL}_n(\mathbb{Q})$ be a representation. There is an equivalent representation $\rho_0: G \to \text{GL}_n(\mathbb{Z})$, which one can easily extend via the natural projection, to a representation over \mathbb{F}_p :

$$
\overline{\rho_0} : \pi_p \circ \rho_0 : G \to \mathrm{GL}_n(\mathbb{F}_p)
$$

where $\pi_p : \mathbb{Z} \to \mathbb{Z}/p$. We want to understand how we can link modular representations and ordinary representations. We have an embedding and a projection

$$
\mathbb{Q}G \iff \mathbb{Z}G \implies \mathbb{F}_pG
$$

which we wish to generalize.

Let R be a valuation ring, $\mathfrak m$ the unique maximal ideal, and quotient field

$$
K = R \cup \{x^{-1} \mid x \in R - \{0\}\} \neq R
$$

- (1) We're assuming R is an integral domain.
- (2) R is local
- (3) R is integrally closed in K
- (4) Any finitely generated torsion-free R-module is free.

Theorem 1. If R is a valuation ring with quotient field K, any representation $\rho: G \to GL_n(K)$ is equivalent to some representation $\rho_0 : G \to \mathrm{GL}_n(K)$, where $\rho_0(g) \in \mathrm{GL}_n(R)$ for all $g \in G$.

If K is a field of chracteristic zero and p is a prime, then there is a valuation ring R with quotient field K and char $R/J(R) = p$.

We now define a p-modular system. If p is a prime, (K, R, F) is call a p-modular system if R is a complete discrete valuation ring with coefficient field K of chracteristic zero and $R/\pi R \cong \mathbb{F}$ is of chracteristic p.

One says that (K, R, F) is a *splitting system* if K contains a splitting field for $x^e - 1$, where e is the exponent of G.