SEMIDIRECT PRODUCTS

Let G be a group and $H, K \leq G$ such that $H \lhd G$, and $H \cap K = \{1_G\}$. From general theory, $HK \leq G$ and each element of HK can be written uniquely:

$$
(h_1k_1)(h_2k_2) = h_1k_1h_2k_1^{-1}k_1k_2
$$

is an element of HK because $k_1k_2 \in k$, $k_1h_2k_1^{-1} \in H$ by normality, and therefore $h_1k_1h_2k_1^{-1} \in H$ as well. The uniqueness argument is the usual one.

We move on to a general discussion. Let H and K be two abstract groups. Suppose that $\varphi: K \to \text{Aut}(H)$ is a group homomorphism. We define

$$
G := \{(h, k) \mid h \in H \text{ and } k \in K\}
$$

with multiplication

$$
(h_1,k_1)(h_2,k_2)=(h_1\varphi(k_1)(h_2),k_1k_2).
$$

We claim that $\langle G, \cdot_{\varphi} \rangle$ is a group.

- Closure: By Construction.
- Associativity: Multiplication in H and K is associative and the composition of functions is associative.
- <u>Identity:</u> $(1_H, 1_K)$.
- Inverse: $(\varphi(k)^{-1}(h^{-1}), k^{-1})$ inverts (h, k) .

An Action of K on H . We note that there is an action of K on H given by

$$
K \times H \to H
$$

$$
(k, h) \mapsto \varphi(k)(h)
$$

because

•

•

 $1_K \cdot h = \varphi(1_K)(h)$ $=\mathrm{Id}_H(h)$ $= h$

 $(k_1 \cdot k_2) \cdot h = \varphi(k_1 k_2)(h)$ $= (\varphi(k_1) \circ \varphi(k_2)(h))$ $= k_1 \cdot (k_2 \cdot h)$

Remark 1. Suppose we have this setup and φ is the trivial homomorphism. That is, $\varphi(k) = \mathrm{Id}_H$ for every $k\in K.$ Then

(1)

$$
(h_1, k_1)(h_2, k_2) = (h_1 \varphi(k_1)(h_2), k_1 \cdot k_2)
$$

$$
= (h_1 \cdot h_2, k_1 \cdot k_2)
$$

$$
\left(2\right)
$$

$$
(h,k)(1_H, k')(k^{-1}h^{-1}, k^{-1}) = (h\varphi(k)(1_H), kk')(k^{-1}h^{-1}, k^{-1})
$$

$$
= (h, kk')(k^{-1}h^{-1}, k^{-1})
$$

$$
= (h \cdot \varphi(kk)(\varphi(k)^{-1}(h^{-1})), kk'k^{-1})
$$

$$
= (h\varphi(kk'k^{-1})(h^{-1}), kk'k^{-1})
$$

$$
= (1_H, kk'k^{-1})
$$

This implies that $K \triangleleft G$. So, we've now witnessed that $G \cong H \times K$. In fact, $K \triangleleft G$ and $G \cong H \times K$ if and only if φ is the trivial homomorphism.

To get the forward implication, note that the commutator

$$
hkh^{-1}k^{-1} \in K \text{ because } K \vartriangleleft G
$$

and

$$
hkh^{-1}k-1 \in H \text{ because } H \vartriangleleft G
$$

and one sees that $[h, k] \in H \cap K$ for all $h \in H$ and $k \in K$. Hence,

$$
k \cdot h = \varphi(k)(h) = h \cdot k \in H
$$
 for every $k \in K$

and instantly we have that φ is the trivial homomorphism.

Notation. Our setup is that H and K are two abstract groups with a group homomorphism $\varphi: K \to$ Aut(H). Then the semidirect product of H and K with respect to φ is denoted

$$
G = H \rtimes_{\varphi} K
$$

and often times the φ is suppressed in the literature. The symbolism is chose to remind us that $H \lhd G$.

Conjugation Action. We have one item left to mention. The action of K on H that we mentioned earlier is by conjugation. Since $H \triangleleft G$, $khk^{-1} \in H$ for every $k \in K$. We've identified H and K in G via the usual way. So,

$$
khk^{-1} = (1_H, k)(h, 1_k)(1_H, k^{-1})
$$

$$
= (1_H \cdot \varphi(k)(h), k)(1_H, k^{-1})
$$

$$
= (\varphi(k)(h) \cdot \varphi(k)(1_H), kk^{-1})
$$

$$
= (\varphi(k)(h), 1_K)
$$

$$
= \varphi(k)(h)
$$

and therefore $k \cdot h = \varphi(k)(h) = khk^{-1}$.

Example 1. Suppose H is an abelian group, $K = \mathbb{Z}/2$, and $\varphi : K \to \text{Aut}(H)$ a group homomorphism. We that have two choices for φ :

Case 1: φ is the trivial group homomorphism.

In this case, we know that $G = H \rtimes \mathbb{Z}/2 \cong H \times \mathbb{Z}/2$.

Case 2: φ sends the generator σ of $\mathbb{Z}/2$ to the inversion automorphism

$$
i: H \to H
$$

$$
h \mapsto h^{-1}
$$

Observations:

.

- H is a subgroup of index 2 in $G = H \rtimes K$, so $H \lhd G$.
- $\sigma \cdot h = h^{-1}$ as given above. We've also seen that $\sigma \cdot h = \sigma h \sigma^{-1} = \sigma h \sigma$ and therefore $\sigma h \sigma = h^{-1}$. That is, σ is an involution.

Of particular interest, is when $H = \mathbb{Z}/n$ for $n \geq 2$. Then $H \rtimes \mathbb{Z}/2$ can be presented as

$$
\langle h, \sigma \mid h^n = \sigma^2 = 1
$$
 and $\sigma h \sigma = h^{-1} \rangle \cong D_{2n}$

and when $H = \mathbb{Z}$, we have that $H \rtimes \mathbb{Z}/2 \cong D_{\infty}$.