Suppose that $\mathbb{k} = \overline{\mathbb{F}}_p$, p a prime. Given $a \ge 1$, there is a unique subfield \mathbb{F}_q , $q = p^e$. There is the standard Frobenius map

$$F_q: \mathbb{k}^n \to \mathbb{k}^n$$
 defined by $(x_1, \dots, x_n) \mapsto (x_1^q, \dots, x_n^q)$.

This map is \mathbb{F}_q -linear and a dominant bijective regular morphism.

Let $B \subseteq \mathbb{k}^n$ be a closed subset, and assume that $V = \mathcal{V}(S)$ for $S \subseteq \mathbb{k}[x_1, \dots, x_n]$. Then $F_q(V) \subseteq V$ and consider the fixed points

$$V^{F_q} := \{ v \in V \mid F_1(v) = V \} = V \cap \mathbb{F}_q^n$$

is a finite subset of V.

Since F_q is a regular morphism, we can consider the algebra homomorphism

$$F_q^* : \mathbb{k}[x_1, \dots, x_n] \to \mathbb{k}[x_1, \dots, x_n]$$

which is injective because F_q is bijective. Furthermore, $F_q^*(x_i) = x_i^q$ so $\operatorname{Im} F_q^* = (k[x_1, \dots, x_n])^q$. Given any $f \in \mathbb{k}[x_1, \dots, x_n]$ its coefficients all lie in $\mathbb{F}_{q^e} \subseteq \mathbb{k}$ and $(F_q^*)^m(f) = f^{q^m}$.

Frobenius Maps.

Definition 1. Let X be an affine variety over $\mathbb{k} = \overline{\mathbb{F}}_p$ and $F: X \to X$ a morphism. Assume that there is a $q = p^e$ such that the following hold for the pullback $F^*: A \to A$

- (a) F^* is injective and $F^*(A) = A^q$.
- (b) For each $f \in A$ there exists some $m \ge 1$ such that $(F^*)^m(f) = f^{q^m}$.

When such conditions hold, we say that (X, A) admits an \mathbb{F}_q -rational structure, and that F is the Frobenius map for X. Furthermore,

$$X^F := \{x \in X \mid F(x) = x\}$$

which are the \mathbb{F}_q -rational points in X.

Proposition 1. Assume that X is an affine variety over \mathbb{F}_q , with Frobenius map $F : X \to X$. Then there exists $n \ge 1$ and a closed embedding $i : X \to \mathbb{k}^n$ such that the following diagram commutes:

Moreover, X^F is finite and F is bijective.

$$A_0 := \{ f \in A \mid F^*(f) = f^q \} \subseteq A.$$

Then for any closed $Y \subseteq X$, the following are equaivalent

- (a) $F(Y) \subseteq Y$
- (b) F(Y) = Y
- (c) The ideal $\mathcal{I}(Y)$ is generated by elements in A_0 .
- (d) $Y = \mathcal{V}(S)$ for some $S \subseteq A_0$.

If these conditions hold, then $F|_Y: Y \to Y$ is a Frobenius map with respect to \mathbb{F}_q .

Algebraic Groups Defined Over \mathbb{F}_q . Let G be an affine algebraic group over \mathbb{k} . We say that G is defined over \mathbb{F}_q if there is a Frobenius map $F: G \to G$ with respect to F_q which commutes with:

$$\mu:G\times G\to G$$

$$(g,h)\mapsto gh$$

and

$$i: G \to G$$

 $q \mapsto q^{-1}$

That is, F is also a group homomorphism. Consequently,

$$G^F = \{g \in G \mid F(g) = g\}$$

is a finite group. Perhaps more correctly, a *finite algebraic group*.

We now introduce the generalized Frobenius map:

Definition 2. A homomorphism $F : G \to G$ of algebraic groups is called a *generalized Frobenius map* if some power of F is the Frobenius map for an \mathbb{F}_q - rational structure on G.

Theorem 1 (Lang - Steinberg). Assume that G is a connected affine algebraic group over \Bbbk and $F: G \to G$ is a generalized Frobenius map. Then

$$L: G \to G$$
$$g \mapsto g^{-1}F(g)$$

is a dominant finite morphism. In particular, L is surjective.

Frobenius Maps & BN-Pairs. Let G be an algebraic group over k which has a split BN-pair. If $F: G \to G$ is the Frobenius map on G, we wish to consider B^F and N^F .

Q: Is B^F and N^F a split BN-pair for G^F ?

Suppose that $B, N \leq G$ are closed F-stable subgroups which form a *reductive* BN-pair with Weyl group W.

Definition 3. Let G be an affine algebraic group of k. Suppose G contains two closed subgroups B and N which form a split BN-pair. Write $B = U \cdot H$ where $H = B \cap N$ and $U \triangleleft B$. We say that G is a group with a reductive BN-pair if

- (i) The group H is a torus such that $C_G(H) = H$.
- (ii) The group U is closed connected and nilpotent.
- **Q:** What does it mean for U to be nilpotent?

A: Define a descending chain of normal subgroups $K_0(G) = G, K_1(G) = [G, G], \ldots, K_{i+1}(G) = [G, K_i(G)].$ We say that G is *nilpotent* if $K_t(G) = \{1_G\}$ for some $t \in \mathbb{N}$.

Definition 4. (1) The *radical* of an algebraic group G is the identity component of the maximal normal solvable subgroup.

(2) The unipotent radical of G is defined to be

$$R_u(G) := \bigcap_{\chi \in X(G)} \ker(\chi)$$

(characters here are linear characters $\chi: G \to \mathbb{G}_m$.)

Now that we understand all of the terminology we take $U = R_u(B)$, note that $H = B \cap N$ is a torus, and write $B = U \cdot H$. We wish to show that the Frobenius map satisfies the two properties from the previous lecture:

(BN φ 1) U, N, and H are F-stable.

(BN $\varphi 2$) For any $n \in N$, every coset nH such that $F(nH) \subseteq nH$ contains an F-fixed point.

Seeing that the first property holds is a consequence of the fact that we're assuming that B and N are F-stable, and U is F-stable because U is closed $F(U) \subseteq U$ implies that F(U) = U.

To see that the second property holds, let $n \in N$ and suppose that the coset Hn is F-invariant. Then there exists $t \in H$ such that $F(n) = t^{-1}n$. Now $F|_H$ is a generalized Frobenius map and H connected implies that we can apply the Lang-Steinberg theorem. Hence, there exists $h \in H$ such that $t = h^{-1}F(h)$. So,

$$F(hn) = F(h)F(n) = htt^{-1}n = hn$$

and therefore hn is an F-fixed point as required.

By our discussion in the previous lecture, we now have that B^F and N^F form a BN-pair for G^F .

Finite Classical Groups. Let $G \subseteq GL_n(k)$ be one of the following classical groups

 $\begin{cases} \operatorname{GL}_{n}(\Bbbk) & \text{any } n, \text{any characteristic.} \\ \operatorname{SO}_{2m+1}(\Bbbk) & n = 2m + 1, \operatorname{char}(\Bbbk) \neq 2 \\ \operatorname{Sp}_{2n}(\Bbbk) & n = 2m, \text{ any characteristic} \\ \operatorname{SO}_{2n}^{+}(\Bbbk) & n = 2m, \text{ any characteristic} \end{cases}$

These groups all have a split BN-pair where

- $B = G \cap B_n(\Bbbk)$
- $N = G \cap N_n(\Bbbk)$
- $U = G \cap U_n(\Bbbk)$

and we can write $B = U \cdot T$, where T is a torus. This BN-pair is reductive. Now consider the Frobenius map

$$F: G \to G$$
$$(a_{ij}) \mapsto (a_{ij}^q)$$

and one can show that B, N are F-stable. From the discussion in the other lecture, B^F and N^F are a split BN-pair for G^F . Hence, the classical finite groups all have a split BN-pair.