Classification of Finite Simple Groups

Let G be a finite group. We say that G is *simple* if it has no normal subgroups other that G or 1_G . A major accomplishment of the 20th century was the classification of finite simple groups. The classification can be broadly viewed as:

- (1) Cyclic groups of prime order
- (2) Alternating groups A_n , for $n \geq 5$.
- (3) Finite Simple Groups of Lie Type
- (4) The 26 Sporadic Simple Groups

Our interest will be in finite simple groups of Lie type. First, we'll say a few words about the sporadic simple groups. (pg. 254 - Aschbacher)

• Monster Group:

- (a) Uniqueness was proven by the existence of a 196,883 dimensional faithful representation.
	- (Norton 1985) Never published
	- (Griess, Meierfrankenfeld, & Seger 1989)
- (b) Conway & Norton conjectured: There is a graded G-module

$$
V = \bigoplus_{m \ge -1} V_m
$$

with dim $V_m = c(m)$, where

$$
j(q) = \sum_{m \ge -1} c(m) q^m
$$

is the unique normalized main modular function.

– (Borchereds - 1992)

• Mathieu Groups

- Realized as multiply transitive permuation groups.
- First sporadic groups discovered
- M_{12} introduced in $1861\,$
- Witt in 1938 constructed these as automorphism groups of Steiner systems.

2

 $PSL_2(\mathbb{F}_q)$, $q \geq 4$ is Simple. We now look at finite groups of Lie type, which will be our interest for the rest of the talk. We will focus on two examples:

- (1) PSL₂(\mathbb{F}_q), where $q = p^e$ for some prime p. These groups are simple except PSL₂(\mathbb{F}_2) $\cong S_3$ and $PSL_2(\mathbb{F}_3) \cong A_4.$
- (2) Suzuki groups ${}^2B_2(q^2)$.

Remark 1. Each group of Lie type corresponds to a Dynkin diagram and the action from which they are obtained.

We define the projective linear groups as follows:

$$
\mathrm{PGL}_n(\mathbb{F})=\mathrm{GL}_n(\mathbb{F})/Z(\mathrm{GL}_n(\mathbb{F}))
$$

and

$$
\mathrm{PSL}_n(\mathbb{F}) = \mathrm{SL}_n(\mathbb{F})/Z(\mathrm{SL}_n(\mathbb{F}))
$$

where $Z(\mathrm{GL}_n(\mathbb{F}) = Z(\mathrm{SL}_n(\mathbb{F}) = \langle \lambda I_n \rangle \text{ for } \lambda \in \mathbb{F}^*$.

Remark 2.

- (1) These groups all have a well-defined action on projective space.
- (2) The group $\text{PGL}_n(\mathbb{F})$ is of Lie type and corresponds to the Dynkin diagram A_{n-1} .

Our goal is to prove that:

Theorem 1. If $\mathbb F$ is a finite field with order 4 or larger, then $PSL_2(\mathbb F)$ is simple.

To do this, we will first work through some results for $\text{SL}_2(\mathbb{F}).$

Definition 1. Let F be any field and $G = GL_2(\mathbb{F})$ or $G = SL_2(\mathbb{F})$. Then the standard Borel subgroup B of G is the group of upper triangular matrices in G. For $G = SL_2(\mathbb{F})$,

$$
B = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mid a \in \mathbb{F}^* \text{ and } b \in \mathbb{F} \right\}.
$$

 \setminus $\overline{1}$

Proposition 1 (Bruhat Decomposition). Let $w =$ $\sqrt{ }$ \mathcal{L} 0 1 −1 0 \setminus and $G = SL_2(\mathbb{F})$. Then there is a decomposition of G into disjoint subsets

$$
G=B\sqcup BwB.
$$

Moreover, B is a maximal subgroup of G.

Proof. Let
$$
g \in G
$$
 and write $g = \begin{pmatrix} a & b \ c & d \end{pmatrix}$. If $c = 0$, then $g \in B$. If $c \neq 0$, then
\n
$$
\begin{pmatrix} b - a d c^{-1} & a \ 0 & -c \end{pmatrix} \begin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & d c^{-1} \ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b - a d c^{-1} \ c & 0 \end{pmatrix} \begin{pmatrix} 1 & d c^{-1} \ 0 & 1 \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} a & b \ c & d \end{pmatrix}
$$
\n
$$
= g \in B w B.
$$

Disjoint: We make the observation that

$$
\begin{pmatrix} a_1 & b_1 \ 0 & d_1 \end{pmatrix} \begin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \ 0 & d_2 \end{pmatrix} = \begin{pmatrix} * & * \ -d_1 a_2 & * \end{pmatrix} \notin B
$$

because $a_1d_1 = 1$, $a_2d_2 = 1$, and $-d_1a_2 \neq 0$.

We are left to show that $\langle B, g \rangle = G$ for $g \in G \setminus B$. That is, the standard Borel subgroup is maximal in G. Let $g \neq B$ so $g \in BwB$. Then there exist $b_1, b_2 \in B$ such that we can write $g = b_1wb_2$. Well

- (1) $w \in \langle B, g \rangle$
- (2) $BwB \subseteq \langle B, g \rangle$

and therefore $G = B \sqcup BwB \subseteq \langle B, g \rangle$. We conclude that $G = \langle B, g \rangle$.

We now define

$$
U := \left\{ \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} \mid \alpha \in \mathbb{F} \right\}
$$

and

$$
\overline{U} := \left\{ \begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix} \mid \beta \in \mathbb{F} \right\}
$$

Facts:

- (1) $U \leq B$ and in fact $U \lhd B$
- (2) U is abelian and isomorphic to $\langle \mathbb{F}, +\rangle$.
- (3) One can show that $\overline{U} = wUw^{-1}$.

Proposition 2.

4

- (1) For any finite field \mathbb{F} , $SL_2(\mathbb{F}) = \langle U, \overline{U} \rangle$.
- (2) Let $\mathbb F$ be a field, $\#\mathbb F \geq 4$, then $SL_2(\mathbb F)$ is perfect. That is, $[SL_2(\mathbb F), SL_2(\mathbb F)] = SL_2(\mathbb F)$.

Lemma 1. Let $G = SL_2(\mathbb{F})$. Then

$$
\bigcap_{g \in G} gBg^{-1} = Z(G).
$$

We now prove the theorem:

Proof. Let $G = SL_2(\mathbb{F}_q)$, $q \geq 4$. Take $N \lhd G$ and invoke the 4th isomorphism theorem. It is enough to show that $N \leq Z(G)$ or $N = G$.

Since the standard Borel subgroup B is maximal in G, either $NB = B$ or $NB = G$.

(1) $N \leq B \Rightarrow N < gBg^{-1}$ for all $g \in G$ and therefore

$$
N \le \bigcap_{g \in G} gBg^{-1} = Z(G).
$$

Remark 3. All Borel subgroups are conjugate to the standard Borel subgroup.

(2) Suppose that $NB = G$. Then there exists $x \in N$ and $b \in B$ with $w = xb$. So,

$$
\overline{U} = wUw^{-1} = xbU(xb)^{-1}
$$

$$
= xbUb^{-1}x^{-1}
$$

$$
= xUx^{-1}
$$

$$
\leq NU
$$

but $G = \langle U, \overline{U} \rangle = NU$. Applying the second isomorphism theorem, one sees that

$$
G/N = N U/N \cong \frac{U}{U \cap N}
$$

which is abelian. Hence $N \supset G' = G$ and therefore $N = G$.

 \Box