
1. Almost Geometric Quotients

Proposition 1. Let π : X → X//G be a categorical quotient. Then the following are equaivalent:

(1) X has a G-invariant Zariski dense open subset U0 such that G · x is closed in X, for every x ∈ U0.

(2) X//G has a Zariski dense open subset U such that π|π−1(U) : π−1(U)→ U is a geometric quotient.

Definition 1. A categorical quotient is said to be almost geometric if it satisfies the equivalent conditions

above.

Goal: Let X(∆) be a toric variety of a fan ∆. Our goal is to construct an almost geometric quotient:

X(∆) ∼= (Cr \ Z) //G

where

• Z - exceptional set (plays the role of the irrelevant ideal when working with Pn)

• G - linearly reductive group

2. Quotient Constructions of Toric Varieties

Let X(∆) be a toric variety with no torus factors. That is NR is spanned by the minimal generators Uρ,

where ρ is a ray. The sequence

0 // M // ⊕
ρ ZDρ

// Cl(X) // 0

is exact. We’ve seen that this is right exact. The map

M −→
⊕
ρ

ZDρ

m 7−→ div(χm) =
∑
ρ

〈m,uρ〉Dρ

If div(χm) = 0, then 〈m,uρ〉 = 0, for every ray ρ. The uρ span NR by assumptions so m = 0.
1



2

The functor HomZ( ,C∗) is left exact and C∗ is divsible, which gives rise to the following diagram:

1 // HomZ(Cl(X),C∗) // HomZ (
⊕

ZDρ,C∗) //

o
��

HomZ(M,C∗) //

o
��

1

1 // G // (C∗)∆(1) // Tn // 1

Lemma 1 (Structure of G).

Let G ⊂ (C∗)∆(1)
defined as above. Then

(1) Cl(X) is the character group of G.

(2) G0 is a torus and G = (Cr)×H, where H is a finite group.

(3) Given a basis e1, . . . en of M ,

G =

{
(tρ) ∈ (C∗)∆(1) |

∏
ρ

t〈m,uρ〉ρ = 1 ∀m ∈M

}

=

{
(tρ) ∈ (C∗)∆(1) |

∏
ρ

tei,uρρ = 1, 1 ≤ i ≤ n

}

Proof. (b) The class group is a finitely generated abelian group so Cl(X) ∼= Zl × H, where H is a finite

group. Then

G = HomZ(Cl(X),C∗) ∼= HomZ(Zl ×H,C∗) ∼= (C∗)l ×HomZ(H,C∗)

and we’re done since HomZ(H,C∗) is a finite group.

(a) We need to assoaciate α ∈ Cl(X) with a character G → C∗. Well, g ∈ G is some Cl(X) → C∗. So

defined

G
φα−→ C∗

g 7−→ g(α).

�

Remark 1. G is linearly reductive.
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Example 1. The fan for P1 × P1 is u1 = e1, u2 = −e2, u3 = e2, u4 = −e2. Then (t1, t2, t3, t4) ∈ (C∗)4 if and

only if

t
〈m,e1〉
1 t

〈m,−e1〉
2 t

〈m,e2〉
3 t

〈m,−e2〉
4 = 1

for all m ∈M = Z2. Let m = (e1, e2) and we get

t1t
−1
2 t3t

−1
4 = 1⇒ t1t

−1
2 = t3t

−1
4 = 1

⇒ G = {(µ, µ, λ, λ) | µ, λ ∈ C∗}

⇒ G ∼= (C∗)2.

3. The Exceptional Set

We have a groupG and an affine space C∆(1) and we now wish to understand the exceptional set Z ⊆ C∆(1).

The two objects that we have C∆(1) and G = HomZ(Cl(X),C∗) depend on ∆(a). We need Z to encode the

rest of the fan.

Definition 2. Introduce a variable xρ, for each ρ ∈ ∆(1). The total coordiante ring of X(∆) is S = C[xρ |

ρ ∈ ∆(1)].

Remark 2. Certainly SpecS is C∆(1).

3.1. Construction of Z. Let σ ∈ ∆ be a cone and define a monomial xσ̂ =
∏

ρ/∈σ(1)

xρ the product of those

variable corresponding to variables whose rays are not in the cone. To get our exceptional set, we need an

ideal:

B(∆) = 〈xσ̂ | σ ∈ ∆〉 ⊆ S

is the irrelevant ideal.

Notice that, τ ≤ σ implies that xτ̂ is a multiple of xσ̂ so we can construct B(∆) from the maximal cones

of ∆. Further, once we have ∆(1), B(∆) determines ∆ uniquely. Then our exceptional set is the variety:

Z(∆) = V(B(∆)) ⊆ C∆(1).
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Example 2. Come back to the fan for P1 × P1 determined by ∆(1) = {u1, u2, u3, u4}, where u1 = e1, u2 =

−e1, u3 = e2, u4 = −e2. For each ui, we get a variable xi, we can compute Z(∆)

(1) The maximal cones Cone(u1, u3) gives x2x4 = xσ̂. The others are x1x4, x1x3, x3x2. Then

B(∆) = 〈x2x4, x1x4, x1x3, x3x2〉

Z = {0} × C2 ∪ C2 × {0}

4. The Quotient Construction

We now have the following setup

• C∆(1) - affine space

• HomZ(Cl(X),C∗) - Group

• B = 〈xσ̂ | σ ∈ ∆〉 - V (B) is the exceptional set.

We first construct a toric morphism C∆(1) \Z(B)→ X(∆). Let {eρ | ρ ∈ ∆(1)} be the standard basis for

Z∆(1). For each σ ∈ ∆ define

σ̃ = Cone(eρ | ρ ∈ σ(1)).

These cones and their faces form a fan ˜Delta = {τ | τ ≤ σ̃, for some σ ∈ ∆}.

Proposition 2.

(1) C∆(1) \ Z(B) is the toric variety of the fan ∆̃.

(2) The map

Z∆(1) → N

eρ 7→ uρ

of lattices is compatible with fans.

(3) The resulting toric morphism π : C∆(1) \ Z(B)→ X(∆) is constant on G-orbits.
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Proof. (1) Let ∆̃0 be the fan consisting of Cone(eρ | ρ ∈ ∆(1)) and its faces. Note that ∆̃ is a subfan of ∆̃0.

Well, ∆̃0 is the fan of C∆(1), and we get the toric variet of ˜Delta by taking C∆(1) and removing the orbits

corresponding to cones in ∆̃0 \ ∆̃.

The orbit-cone correspondence says this is equivalent to removng the orbit closures of ∆̃0 \ ∆̃:

V(xρ | ρ ∈ C) C is a primitive collection.

So, we remove

Z(B) =
⋃
C

V(xρ | ρ ∈ C).

Definition 3. A subset C ⊂ ∆(1) is a primitive collection if

(1) C * σ(1), for all σ ∈ ∆.

(2) For every C ′
*

proper C, there exists σ ∈ ∆ such that C ′ ⊆ σ(1).

(2) Define

π̄ : Z∆(1) → N

eρ 7→ uρ

the uρ are minimal generators. Notice that π̄R(σ̃) = σ by the definition of σ̃. Hence, p̄i is compatible with

respect to the fans ∆̃,∆.

(3) This map p̄i indcues a map of toric

(C∗)∆(1) −→ TN .

Let g ∈ G ⊆ (C∗)∆(1)
, by the exact sequence, and x ∈ C∆(1) \ Z(B). One has that

π(g · x) = π(g)π(x) = π(x)

where the first equality is given by the fact that the map π is G-equivariant, and the second equality is from

the fact that G = Ker[(C∗)∆(1) → TN ]. �
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Theorem 1. Let X(∆) be a toric variety without torus factors and consider the toric morphism

π : C∆(1) \ Z(B) −→ X(∆).

Then

(1) π is an almost geometric quotient for the action of G on C∆(1) \ Z(∆) so that

X(∆) ∼=
(
C∆(1) \ Z(B)

)
//G.

(2) π is a geometric quotient if and only if ∆ is simplicial.


