1. Almost Geometric Quotients

Proposition 1. Let $\pi: X \to X//G$ be a categorical quotient. Then the following are equalvalent:

- (1) X has a G-invariant Zariski dense open subset U_0 such that $G \cdot x$ is closed in X, for every $x \in U_0$.
- (2) X//G has a Zariski dense open subset U such that $\pi|_{\pi^{-1}(U)}: \pi^{-1}(U) \to U$ is a geometric quotient.

Definition 1. A categorical quotient is said to be *almost geometric* if it satisfies the equivalent conditions above.

Goal: Let $X(\Delta)$ be a toric variety of a fan Δ . Our goal is to construct an almost geometric quotient:

$$X(\Delta) \cong \left(\mathbb{C}^r \setminus Z\right) / / G$$

where

- Z exceptional set (plays the role of the irrelevant ideal when working with \mathbb{P}^n)
- G linearly reductive group

2. QUOTIENT CONSTRUCTIONS OF TORIC VARIETIES

Let $X(\Delta)$ be a toric variety with no torus factors. That is $N_{\mathbb{R}}$ is spanned by the minimal generators U_{ρ} , where ρ is a ray. The sequence

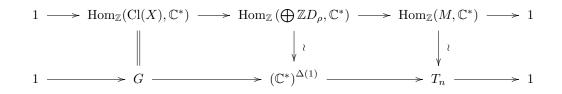
$$0 \longrightarrow M \longrightarrow \bigoplus_{\rho} \mathbb{Z}D_{\rho} \longrightarrow \operatorname{Cl}(X) \longrightarrow 0$$

is exact. We've seen that this is right exact. The map

$$\begin{split} M &\longrightarrow \bigoplus_{\rho} \mathbb{Z} D_{\rho} \\ m &\longmapsto \operatorname{div}(\chi^m) = \sum_{\rho} \langle m, u_{\rho} \rangle D_{\rho} \end{split}$$

If $\operatorname{div}(\chi^m) = 0$, then $\langle m, u_\rho \rangle = 0$, for every ray ρ . The u_ρ span $N_{\mathbb{R}}$ by assumptions so m = 0.

The functor $\operatorname{Hom}_{\mathbb{Z}}(\ ,\mathbb{C}^*)$ is left exact and \mathbb{C}^* is divisble, which gives rise to the following diagram:



Lemma 1 (Structure of G).

Let $G \subset (\mathbb{C}^*)^{\Delta(1)}$ defined as above. Then

- (1) $\operatorname{Cl}(X)$ is the character group of G.
- (2) G^0 is a torus and $G = (\mathbb{C}^r) \times H$, where H is a finite group.
- (3) Given a basis $e_1, \ldots e_n$ of M,

$$G = \left\{ (t_{\rho}) \in (\mathbb{C}^*)^{\Delta(1)} \mid \prod_{\rho} t_{\rho}^{\langle m, u_{\rho} \rangle} = 1 \quad \forall m \in M \right\}$$
$$= \left\{ (t_{\rho}) \in (\mathbb{C}^*)^{\Delta(1)} \mid \prod_{\rho} t_{\rho}^{e_i, u_{\rho}} = 1, 1 \le i \le n \right\}$$

Proof. (b) The class group is a finitely generated abelian group so $Cl(X) \cong \mathbb{Z}^l \times H$, where H is a finite group. Then

$$G = \operatorname{Hom}_{\mathbb{Z}}(\operatorname{Cl}(X), \mathbb{C}^*) \cong \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}^l \times H, \mathbb{C}^*) \cong (\mathbb{C}^*)^l \times \operatorname{Hom}_{\mathbb{Z}}(H, \mathbb{C}^*)$$

and we're done since $\operatorname{Hom}_{\mathbb{Z}}(H, \mathbb{C}^*)$ is a finite group.

(a) We need to associate $\alpha \in \operatorname{Cl}(X)$ with a character $G \to \mathbb{C}^*$. Well, $g \in G$ is some $\operatorname{Cl}(X) \to \mathbb{C}^*$. So defined

$$G \xrightarrow{\phi_{\alpha}} \mathbb{C}^*$$
$$g \longmapsto g(\alpha).$$

Remark 1. G is linearly reductive.

Example 1. The fan for $\mathbb{P}^1 \times \mathbb{P}^1$ is $u_1 = e_1, u_2 = -e_2, u_3 = e_2, u_4 = -e_2$. Then $(t_1, t_2, t_3, t_4) \in (\mathbb{C}^*)^4$ if and only if

$$t_1^{\langle m, e_1 \rangle} t_2^{\langle m, -e_1 \rangle} t_3^{\langle m, e_2 \rangle} t_4^{\langle m, -e_2 \rangle} = 1$$

for all $m \in M = \mathbb{Z}^2$. Let $m = (e_1, e_2)$ and we get

$$\begin{split} t_1 t_2^{-1} t_3 t_4^{-1} &= 1 \Rightarrow t_1 t_2^{-1} = t_3 t_4^{-1} = 1 \\ \Rightarrow G &= \{(\mu, \mu, \lambda, \lambda) \mid \mu, \lambda \in \mathbb{C}^*\} \\ \Rightarrow G &\cong (\mathbb{C}^*)^2. \end{split}$$

3. The Exceptional Set

We have a group G and an affine space $\mathbb{C}^{\Delta(1)}$ and we now wish to understand the exceptional set $Z \subseteq \mathbb{C}^{\Delta(1)}$. The two objects that we have $\mathbb{C}^{\Delta(1)}$ and $G = \operatorname{Hom}_{\mathbb{Z}}(\operatorname{Cl}(X), \mathbb{C}^*)$ depend on $\Delta(a)$. We need Z to encode the rest of the fan.

Definition 2. Introduce a variable x_{ρ} , for each $\rho \in \Delta(1)$. The total coordiante ring of $X(\Delta)$ is $S = \mathbb{C}[x_{\rho} \mid \rho \in \Delta(1)]$.

Remark 2. Certainly Spec S is $\mathbb{C}^{\Delta(1)}$.

3.1. Construction of Z. Let $\sigma \in \Delta$ be a cone and define a monomial $x^{\hat{\sigma}} = \prod_{\rho \notin \sigma(1)} x_{\rho}$ the product of those variable corresponding to variables whose rays are not in the cone. To get our exceptional set, we need an ideal:

$$B(\Delta) = \langle x^{\hat{\sigma}} \mid \sigma \in \Delta \rangle \subseteq S$$

is the irrelevant ideal.

Notice that, $\tau \leq \sigma$ implies that $x^{\hat{\tau}}$ is a multiple of $x^{\hat{\sigma}}$ so we can construct $B(\Delta)$ from the maximal cones of Δ . Further, once we have $\Delta(1)$, $B(\Delta)$ determines Δ uniquely. Then our exceptional set is the variety:

$$Z(\Delta) = \mathbf{V}(B(\Delta)) \subseteq \mathbb{C}^{\Delta(1)}.$$

Example 2. Come back to the fan for $\mathbb{P}^1 \times \mathbb{P}^1$ determined by $\Delta(1) = \{u_1, u_2, u_3, u_4\}$, where $u_1 = e_1, u_2 = -e_1, u_3 = e_2, u_4 = -e_2$. For each u_i , we get a variable x_i , we can compute $Z(\Delta)$

(1) The maximal cones $\operatorname{Cone}(u_1, u_3)$ gives $x_2 x_4 = x^{\hat{\sigma}}$. The others are $x_1 x_4, x_1 x_3, x_3 x_2$. Then

$$B(\Delta) = \langle x_2 x_4, x_1 x_4, x_1 x_3, x_3 x_2 \rangle$$
$$Z = \{0\} \times \mathbb{C}^2 \cup \mathbb{C}^2 \times \{0\}$$

4. The Quotient Construction

We now have the following setup

- $C^{\Delta(1)}$ affine space
- $\operatorname{Hom}_{\mathbb{Z}}(\operatorname{Cl}(X), \mathbb{C}^*)$ Group
- $B = \langle x^{\hat{\sigma}} \mid \sigma \in \Delta \rangle$ V(B) is the exceptional set.

We first construct a toric morphism $\mathbb{C}^{\Delta(1)} \setminus Z(B) \to X(\Delta)$. Let $\{e_{\rho} \mid \rho \in \Delta(1)\}$ be the standard basis for $\mathbb{Z}^{\Delta(1)}$. For each $\sigma \in \Delta$ define

$$\tilde{\sigma} = \operatorname{Cone}(e_{\rho} \mid \rho \in \sigma(1)).$$

These cones and their faces form a fan $D\tilde{e}lta = \{\tau \mid \tau \leq \tilde{\sigma}, \text{ for some } \sigma \in \Delta\}.$

Proposition 2.

- (1) $\mathbb{C}^{\Delta(1)} \setminus Z(B)$ is the toric variety of the fan $\tilde{\Delta}$.
- (2) The map

$$\mathbb{Z}^{\Delta(1)} \to N$$

$$e_{\rho} \mapsto u_{\rho}$$

of lattices is compatible with fans.

(3) The resulting toric morphism $\pi : \mathbb{C}^{\Delta(1)} \setminus Z(B) \to X(\Delta)$ is constant on G-orbits.

Proof. (1) Let $\tilde{\Delta_0}$ be the fan consisting of $\operatorname{Cone}(e_{\rho} \mid \rho \in \Delta(1))$ and its faces. Note that $\tilde{\Delta}$ is a subfan of $\tilde{\Delta_0}$. Well, $\tilde{\Delta_0}$ is the fan of $\mathbb{C}^{\Delta(1)}$, and we get the toric variet of $D\tilde{elta}$ by taking $\mathbb{C}^{\Delta(1)}$ and removing the orbits corresponding to cones in $\tilde{\Delta_0} \setminus \tilde{\Delta}$.

The orbit-cone correspondence says this is equivalent to removing the orbit closures of $\tilde{\Delta_0} \setminus \tilde{\Delta}$:

 $\mathbf{V}(x_{\rho} \mid \rho \in \mathbb{C})$ C is a primitive collection.

So, we remove

$$Z(B) = \bigcup_C \mathbf{V}(x_\rho \mid \rho \in C).$$

Definition 3. A subset $C \subset \Delta(1)$ is a primitive collection if

- (1) $C \not\subseteq \sigma(1)$, for all $\sigma \in \Delta$.
- (2) For every C' proper C, there exists $\sigma \in \Delta$ such that $C' \subseteq \sigma(1)$.

(2) Define

$$\bar{\pi} : \mathbb{Z}^{\Delta(1)} \to N$$
$$e_{\rho} \mapsto u_{\rho}$$

the u_{ρ} are minimal generators. Notice that $\bar{\pi}_{\mathbb{R}}(\tilde{\sigma}) = \sigma$ by the definition of $\tilde{\sigma}$. Hence, $\bar{p}i$ is compatible with respect to the fans $\tilde{\Delta}, \Delta$.

(3) This map \bar{pi} induces a map of toric

$$(\mathbb{C}^*)^{\Delta(1)} \longrightarrow T_N.$$

Let $g \in G \subseteq (\mathbb{C}^*)^{\Delta(1)}$, by the exact sequence, and $x \in \mathbb{C}^{\Delta(1)} \setminus Z(B)$. One has that

$$\pi(g \cdot x) = \pi(g)\pi(x) = \pi(x)$$

where the first equality is given by the fact that the map π is *G*-equivariant, and the second equality is from the fact that $G = \operatorname{Ker}[(\mathbb{C}^*)^{\Delta(1)} \to T_N]$.

$$\pi: \mathbb{C}^{\Delta(1)} \setminus Z(B) \longrightarrow X(\Delta).$$

Then

(1) π is an almost geometric quotient for the action of G on $\mathbb{C}^{\Delta(1)} \setminus Z(\Delta)$ so that

$$X(\Delta) \cong \left(\mathbb{C}^{\Delta(1)} \setminus Z(B)\right) / / G$$

(2) π is a geometric quotient if and only if Δ is simplicial.