
1. Quotients in Algebraic Geometry

While quotients show up in algebraic geometry, at large, we discuss their appearance in toric geometry.

Toric varieties have always been viewed as a test-bed, of sorts, for algebraic geoemeters. We look toward the

desire to realize a toric variety as an almost geometric quotient. We start with two examples that demonstrate

what quotients are. The first example gives us what is hoped for, and the second demonstrates the reason

we can’t get what we want.

Desire. Let G be a linear algebraic group and X an affine G-variety. The action of G allows us to consider

two objects:

(1) X/G - the orbits of G. One would hope that each orbit corresponds to a point. That is, orbits are

closed.

(2) k[X]G - the ring of invariants

{f ∈ k[X] | g · f = f ∀g ∈ G} .

Here’s the wish: We desire an embedding

k[X]G ↪→ k[X]

which induces a surjective morphism

Spec k[X] � Spec k[X]G = X/G.

We proceed to consider the following two examples. As we’ve alluded to, our wish is unfortunately going to

be impossible to obtain.
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Example 1. Let G = µ2 = {±1} act on C2, by g · (a, b) = (ga, gb). We now consider the orbits of this

action:

O(a,b) = {(a, b), (−a,−b)}

O(0,0) = {(0, 0)} - the unique fixed point of the action

The ring of invariants k[x, y]µ2 = k[x2, xy, y2], which is the coordinate ring of V(xz − y2), which we’ve

seen is a toric variety, where

O(a,b) 7→ (a2, ab, b2)

and yields the map

Φ : C2/µ2 → V(xz − y2).

This gives us the notion that we can make C/µ2 into a variety.

It turns out that life isn’t quite as nice as we hoped.

Example 2. Let Gm act diagonally on C2 by g · (x, y) = (g · x, g · y). If g · f(x, y) = f(x, y), then

f(g · x, g · y) = f(x, y), for every g ∈ G. So, C[x, y]Gm = C, and SpecC[x, y]Gm = {pt.}. Here we have that

every orbit is mapped to a single point. So,

π : C2 → C2/Gm

fails to separate orbits.

Remark 1.

(1) Here’s a case where we don’t get what was desired. Each orbit does not correspond to a unique point

in the quotient.

(2) The only closed orbit is (0, 0) ∈ C2, the fixed point of the action.



3

Q: If G acts on an affine variety SpecR = X, is k[x]G finitely generated?

A: No.

However, if RG is finitely generated, then SpecRG is an affine variety and is our best candidate for the

quotient. This is the case when G is linearly reductive.

Definition 1. Let G act on a G-variety X. A categorical quotient of X by G is a pair (Y, π) such that Y is

a variety, π : X → Y is a morphism

• π is constant on orbits

• for any other variety Z and morphism ψ, which is constant on orbits, ψ factors through π,

X
π
//

ψ   

Y

∃!f
��
Z

Proposition 1 (Properties of Categorical Quotients). Let G be a linearly reductive group and X an affine

G-variety. Then

(1) π is surjective

(2) If U is a Zariski open subset of Y , then

π∗ : O(U)→ O(π−1(U))G

is an isomorphism.

(3) If W ⊆ X is Zariski closed and G-stable, then π(W ) is closed in Y .

(4) If W1,W2 ⊆ X are Zariski closed, G-stable, and disjoint, then π(W1) ∩ π(W2) = ∅.

Our definition is fairly abstract, so how do we come up with examples? What are examples of categorical

quotients?

If G is a linear algebraic group, and X an affine G-variety, then SpecC[X]G is affine when C[X]G is finitely

generated. This is always the case when G is linearly reductive.
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Remark 2. In characteristic zero, the notions of linearly reductive, reductive, and group theoretically reduc-

tive are all equaivalent.

Definition 2. A linear algebraic group G is said to be linearly reductive if every rational representation V

of G is semisimple. That is V can be written as a direct sum of G-stable simples.

Proposition 2. If G is a linearly reductive group and X an affine G-variety, then k[X]G is finitely generated

and π : X � Spec k[X]G is finitely generated and

π : X � Spec k[X]G

corresponds to the inclusion

k[X]G ↪→ k[X].

We now characterize the properties of linearly reductive groups. In the following, R is the Reynold’s

operator.

Theorem 1 (Characterization of Linearly Reductive).

Let G be a linear algebraic group and V a rational representation. The following are equaivalent:

(1) G is linearly reductive.

(2) For every rational representation V and every 0 6= v ∈ V G, there exists f ∈ (V ∗)G such that

f(v) 6= 0.

(3) For every affine G-variety X, there exists a unique G-invariant projection R : k[X] � k[X]G such

that

(a) R|k[X]G = id |k[X]G

(b) R(g · f) = R(f), for every f ∈ k[X] and for every g ∈ G.

Lemma 1. The Reynold’s operator is a k[X]G-module homorophism. That is, for every f ∈ k[X]G and

h ∈ k[X], R(f · h) = fR(h).
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Theorem 2 (Hilbert’s Finiteness Theorem).

If G is linearly reductive and V a rational representation, then k[V ]G is finitely generated over k.

Proof. Let I be the ideal generated by all homogeneous invariants of positive degree. We have the usual

grading k[V ] =
⊕
d∈N

k[V ]d, which in turn gives a grading for the ring of invariants k[V ]G =
⊕
d∈N

k[V ]Gd . We

know that there exists f1, . . . , fr that generate I because k[V ] is Noetherian. It is clear that I ⊆ k[V ]G by

construction. We wish to show that k[V ]G = k[f1, . . . , fr]. We do so by induction on the degree of d.

If h ∈ k[V ]G of degree zero there is nothing to show. Suppose that h is homogeneous of degree d ≥ 1.

We can write h =

r∑
i=1

gifi, where gi ∈ k[V ]. Without loss of generality, we can assume that the gi are

homogeneous of degree d− deg fi. Apply the Reynold’s operator

h = R(h) =

r∑
i=1

R(gifi) =

r∑
i=1

fiR(hi)

and R(hi) ∈ k[V ]G are homogeneous of degree less than d. Hence, by induction R(hi) ∈ k[f1, . . . , fr]. We

conclude that h ∈ k[f1, . . . , fr]. �

Example 3 (Fulton pg. 33-34).

Let σ ⊆ NR be a strongly convex polyhedral cone and N ′ ⊆ N a sublattice of finite index. Then the finite

group G = N/N ′ acts on Uσ,N ′ such that the induced map on coordinate rings

C[σ∨ ∩M ]
∼−→ C[σ∨ ∩M ′] ↪→ C[σ∨ ∩M ′].

This inclusion gives a morphism of toric varieties

Uσ,N ′
π−→ Uσ,N

which is a categorical quotient. It is in fact, an example of a geometric quotient.

Definition 3. A geometric quotient is a categorical quotient π : X → X//G, where the orbits are all closed.
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2. Constructing Quotients

We now want to move towards working with more general quotients.

Proposition 3. Let G act on X and π : X → Y be a morphism that is constant on orbits. If Y has an

open cover {Vα}α∈Λ such that π : π−1(Vα)→ Vα is a categorical quotient for every α, then π is a categorical

quotient.

Remark 3. The point is we can take a look at what is happening locally.

Example 4. Consider a lattice N and N ′ ⊆ N of finite index and ∆ a fan. We get a toric morphism

φ : X(∆)→ X(∆), and G = N/N ′ is the kernel of TN ′ → TN . Now, φ−1(Uσ,N ) = Uσ′,N ′ , for σ ∈ ∆. So the

previous proposition gives us that φ is a geometric quotient.

3. Good Quotients

We now need to know what to do with arbitrary varieties. Our discussion of quotients for affine varieties

will guide us.

Proposition 4 (Dolgachev pg. 93-94).

Let π : X → Y be a G-invariant morphism satisfying

(1) for any U
⊆

open Y , π∗ : O(U)→ O(U)→ O(p−1(U)) is an isomorphism onto O(p−1(U))G.

(2) If W ⊆ X is a Zariski closed G-invariant subset, then π(W ) is closed.

(3) If W1,W2 are two Zariski closed G-invariant disjoint subsets of X, then π(W1) ∩ π(W2) = ∅.

Then π is a categorical quotient.

Definition 4. A categorical quotient with the properties in the propsition is said to be a good categorical

quotient.

Corollary 1. Suppose π : X → Y is a good categorical quotient. Then

(1) Two points x, y ∈ X have the same image in Y if and only if Gx ∩Gy 6= ∅.
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(2) For each y ∈ Y , π−1(y) contains a unique closed orbit.

Proof. (1) Both Gx and Gy are G-invariant closed subsets of X. If Gx∩Gy 6= ∅, then π(Gx)∩π(Gy) =

∅, but π(x) = π(y) so the intersection π(Gx) ∩ π(Gy) cannot be varnothing.

Conversely, if π(x) 6= π(y) then π−1(x) and π−1(y) are closed subsets so Gx and Gy line in

different fibers. Hence Gx ∩Gy = ∅.

(2) Uniqueness: Suppose π−1(y) contains two closed orbits Gx and Gz. Then Gx ∩Gz 6= ∅ but this

implies that π(y) = π(x) = π(z) which is ridiculous.

Existence: Requires some facts on the dimension of orbits.

�

Example 5. Let Gm act on C4 by g · (a1, a2, a3, a4) = (g ·a1, g ·a2, g
−1a3, g

−1 ·a4) and the ring of invariants

is

k[x1, x2, x3, x4]Gm = k[x1x3, x2x4, x1x4, x2x3]

and

Spec k[x1, x2, x3, x4]Gm = V(xy − zw).

We then get a map

Φ : C4/Gm −→ V(xy − zw) = C4//Gm

O(a1,a2,a3,a4) 7−→ (a1a3, a2a4, a1a4, a2a3).

Here are some properties that we should observe:

(1) Φ is surjective

(2) If p ∈ V (xy − zw)− {0}, then Φ−1(p) is a single closed Gm-orbit.

(3) Φ−1(0) = C2 × {(0, 0)} ∪ {(0, 0} × C2 ⊇ Gm − orbits

That is

{ClosedGm-orbits} ←→ V(xy − zw)
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and since every fibre contains a unique closed orbit we have a bijection

{closedG-orbits inX} ←→ {points inX//G}.


