Let G be a finite group of order n, and k and algebraically closed field of characteristic p.

• We wish to study the ring of invariants

$$k[x_1, \dots, x_n]^G = \{ f \in k[X_1, \dots, x_n] \mid (g \cdot f)(v) = f(v), \quad \forall v \in V, \quad \forall g \in G \}.$$

- Finiteness Issues:
 - (1) Structural:

Q: Is the ring of invariants Noetherian?

(2) Combinatorial:

Q: What is the rate of growth of the sequence of integers

$$\dim_k \left(k[V]_d^G \right) = \dim_k S^d (V^*)^G ?$$

(3) Homological:

Q: Is the ring of invariants Cohen-Macaulay?

Q: What can we say about the length of syzygy chains?

• Our representations will all be faithful. Meaning that

$$\rho: G \hookrightarrow \operatorname{GL}(V)$$

is injective, where V is a finite-dimensional vector space over k.

SEMISIMPLE

We begin by setting out some definitions.

Definition 1.

- (1) A simple representation has no subrepresentations other than itself and the trivial one.
- (2) A representation is said to be *semisimple* if it can be written as a direct sum of simples.
- (3) A representation is said to be *indecomposable* if it cannot be written as a direct sum of subrepresentations.

Theorem 1 (Maschke's Theorem). Let G be a finite group and k a field so that char $k \nmid \#G$. Then every representation of G is semisimple. Equivalently, the group algebra kG is semisimple.

Example 1. Let k be of characteristic p, and C_p the cyclic group of order p, written multiplicatively. If $\rho: C_p \to k^*$ is a representation, then

$$1 = \rho(x^p) = \rho(x)^p \quad \text{for every } x \in C_p.$$

One sees that every element of C_p acts as a *p*th root of unity. However,

$$(\lambda - 1)^p = x^p - 1 \quad \forall \, \lambda \in k^*$$

and therefore every $p{\rm th}$ root of unity is 1. Hence, $\rho:C_p\to k^*$ is the trivial homomorphism.

Q: How many simple representations are there?

Let $\rho: G \to \operatorname{GL}(V)$ be an arbitrary representation.

A:

• Nonmodular Representations

of Conjugacy classes = # of iso classes of simples.

• Modular Representations

Let $#G = p^n r$, and k have char p, (p, r) = 1.

of iso classes of simples = r.

EXAMPLES IN MODULAR REPRESENTATION THEORY

Our setup is as follows:

- k is a field of arbitrary characteristic, p > 0.
- G is a finite group, #G = n.

One can consider the following cases:

- Case 1: Nonmodular $\#G \in k^*$
 - Strong Nonmodular
 - Weak Nonmodular
- Case 2: Modular $\#G \equiv 0 \pmod{p}$.

A basic tool in much of representation theory of finite group is to "average" with respect to the order of G. We cannot do this when the characteristic of k divides the order of G. We let $H \leq G$ and define the transfer homomorphism

$$\operatorname{Tr}_{H}^{G}: k[V]^{H} \longrightarrow k[V]^{G}$$
$$f \longmapsto \sum_{gH \in G/H} g \cdot f(x) = \sum_{gH \in G/H} f(g^{-1} \cdot x).$$

Remark 1.

- (1) We're letting the sum run over the representatives of left cosets of H in G.
- (2) For $H \leq G$, we know that $k[V]^G \hookrightarrow k[V]^H$ as a subalgebra.

Moreover, for every $f \in k[V]^G, h \in k[V]^H$ with $\deg h \geq 1$

(1) $\operatorname{Tr}_{H}^{G}(f) = [G:H]f$

(2)
$$\operatorname{Tr}_{H}^{G}(f \cdot h) = f \operatorname{Tr}_{H}^{G}(h)$$

which gives us that Tr_H^G is an $k[V]^G\text{-module}$ homomoprhism. We can consider

$$k[V]^G \longleftrightarrow k[V]^H \xrightarrow{\operatorname{Tr}_H^G} k[V]^G$$

which is equivalent to multiplication by [G:H]. Hence, when $[G:H] \in k^*$, Tr_H^G is surjective.

5

REYNOLD'S OPERATOR

When [G:H] is invertible in k,

$$\mathcal{R}^G_H(f) = \frac{1}{[G:H]} \sum_{gH \in G/H} g \cdot f$$

is the Reynold's operator. In this case,

$$k[V]^H = k[V]^G \bigoplus \operatorname{Ker} R_H^G$$

and in particular if h is the trivial subgroup

$$\mathcal{R}^G: k[V] \longrightarrow k[V]^G$$

$$f \longmapsto \frac{1}{\#G} \sum g \in Gg \cdot f$$

is the projection onto the ring of invariants.

Remark 2. If the characteristic of k divides the order of G, then \mathcal{R}^G is never surjective.

Example 2. Let \mathbb{F}_2 be the finite field of order 2 and $G = C_2$. Consider the usual representation $\rho : C_2 \to \operatorname{GL}_2(\mathbb{F}_2)$ where

$$\rho(1) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

and

$$\rho(-1) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Note that xy is invaraint, and x^2, xy , and y^2 is a basis for $\mathbb{F}_2[V]_2$. We now make some computations and an observation:

$$\operatorname{Tr}^{G}(x^{2}) = \sum_{g \in G} g \cdot x^{2} = x^{2} + y^{2} = \sum_{g \in G} g \cdot y^{2} = \operatorname{Tr}^{G}(y^{2})$$
$$\operatorname{Tr}^{G}(xy) = \sum g \in Gg \cdot xy = xy + xy = 2xy = 0.$$

Hence, every degree two form has no xy term. That is $xy \in \mathbb{F}_2[V]_2^G$, but $xy \notin \operatorname{Im} \operatorname{Tr}^G$.

Theorem 2 (Feshbach-Derksen). Let $\rho : G \to \operatorname{GL}_n(k)$ be a representation of a finite group G. If chark divides #G, then Tr^G is not surjective.

Proof. Let char k = p > 0, a prime. Since $p \mid \#G$, there exists $h \in G$ such that |h| = p by Cauchy's theorem. Define $H \leq G$ to be the cyclic subgroup generated by h. Let g_1, \ldots, g_k be a left transversal of H in G. We know that $V^H \neq \{0\}$ because #H = p. Choose $0 \neq v \in V^H$ and note that for any $f \in k[V]$

$$Tr^{G}(f)(v) = \sum_{g \in G} (g \cdot f)(v)$$

= $\sum_{g \in G} (f(g^{-1} \cdot v))$
= $\sum_{j=1}^{k} \sum_{i=0}^{p-1} f(g_{j}^{-1}h^{-i} \cdot v)$
= $\sum_{j=1}^{k} pf(g_{j}^{-1} \cdot v)$
= 0.

Suppose that Tr^{G} is surjective. Choose a system of parameters $f_{1}, \ldots, f_{n} \in k[V]^{G}$. Then f_{1}, \ldots, f_{n} is also a system of parameters in k[V]. Let $f \in k[V]$. There exists F_{1}, \ldots, F_{n} such that $f = \sum_{i=1}^{n} f_{i}F_{i}$.

[Finish this proof]

COHEN-MACAULAY

We want to understand a nice property of rings. To be Cohen-Macaulay is to say that the *depth* and Krull dimension are equal. We then will take a look at what we know about when the ring of invariants is Cohen-Macaulay.

Definition 2. Suppose that $R = \bigoplus_{d \in \mathbb{N}_0} R_d$ is a graded k-algebra, as usual $R_0 = k$. A set $f_1, \ldots, f_r \in R$ of homogeneous elements is said to be a homogeneous system of parameters (hsop) if

- (1) the f_i are algebraically independent.
- (2) $k[f_1, \ldots, f_r] \subseteq R$ is module-finite.

Remark 3. Some more definitions:

- (1) the $f_1, \ldots, f_r \in k[V]^G$ are primary invariants
- (2) $k[V]^G = Fg_1 + Fg_2 + \dots + Fg_s$, where $F = k[f_1, \dots, f_r]$, the g_i are said to be the secondary invariants.

Fact: The Noether Normalization Theorem guarantees that invariant rings have a hsop.

Definition 3. Let R be a Noetherian graded ring and M a finitely generated R-module.

- (1) A sequence $r_1, \ldots, r_s \in R$ is said to be *M*-regular if $M/\langle r_1, \ldots, r_s \rangle M \neq 0$ and r_i is a NZD on $M/\langle r_1, \ldots, r_{i-1} \rangle M$.
- (2) Let $I \subseteq R$ be an ideal, with $IM \neq M$. Then depth_M(I) is the maximal length of an M-regular sequence.
- (3) The module M is said to be Cohen-Macaulay if for all maximal ideals $\mathfrak{m} \in \operatorname{Supp}(M)$,

$$\operatorname{depth}(M_{\mathfrak{m}}) = \operatorname{dim}_{R_{\mathfrak{m}}}(M_{\mathfrak{m}}).$$

Proposition 1. Let R be a Noetherian graded k-algebra with $R_0 = k$. The following are all equivalent:

- (1) R is Cohen-Macaulay.
- (2) every hsop is R-regular.
- (3) If f_1, \ldots, f_r is an hoop, then R is a free-module over $k[f_1, \ldots, f_r]$.

Theorem 3 (Hochster-Eagon). If char(k) does not divide #G, then $k[V]^G$ is Cohen-Macaulay.

Example 3. Let $G = \langle \sigma \rangle = C_p$ be the cyclic group of order p written multiplicatively, and char k = p > 0. Consider the action of G on $k[x_1, x_2, x_3, y_1, y_2, y_3]$ by

$$\sigma \cdot x_i = x_i$$
 and $\sigma \cdot y_i = x_i + y_i$.

Remark 4.

- (1) The x_i are invariant by definition of the action.
- (2) $u_{ij} = x_i y_j x_j y_i$ are invariant $1 \le i, j \le 3$.

One can extend the sequence x_1, x_2, x_3 to a hop for $k[V]^G$. However,

$$0 = \begin{vmatrix} x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = u_{23}x_1 - u_{13}x_2 + u_{12}x_3$$

shows that x_1, x_2, x_3 is not $k[V]^G$ -regular because $u_{12} = x_1y_2 - x_2y_1 \notin \langle x_1, x_2 \rangle k[V]^G$. We conclude that $k[V]^G$ is not Cohen-Macaulay.