SOME RECOLLECTIONS & SETUP

Let G be a finite group of order n, and k and algebraically closed field of characteristic p.

e We wish to study the ring of invariants

Elzy,...,x0)% = {f € k[X1,..., 2]

(9-f)v)=f(v), YveV, VgeG}

o Finiteness Issues:
(1) Structural:
Q: Is the ring of invariants Noetherian?
(2) Combinatorial:

Q: What is the rate of growth of the sequence of integers
dimy, (k[V]§) = dimy, S*(V*)4?

(3) Homological:
Q: Is the ring of invariants Cohen-Macaulay?
Q: What can we say about the length of syzygy chains?

e Our representations will all be faithful. Meaning that
p:G— GL(V)

is injective, where V' is a finite-dimensional vector space over k.



SEMISIMPLE

We begin by setting out some definitions.

Definition 1.

(1) A simple representation has no subrepresentations other than itself and the trivial one.
(2) A representation is said to be semisimple if it can be written as a direct sum of simples.
(3) A representation is said to be indecomposable if it cannot be written as a direct sum of subrepresen-

tations.

Theorem 1 (Maschke’s Theorem). Let G be a finite group and k a field so that chark t #G. Then every

representation of G is semisimple. Equivalently, the group algebra kG is semisimple.

Example 1. Let k be of characteristic p, and C), the cyclic group of order p, written multiplicatively. If

p: Cp — k¥ is a representation, then

1 =p(aP) = p(x)? for every z € C).

One sees that every element of C), acts as a pth root of unity. However,

A—1P =aP —1 VA€ k*

and therefore every pth root of unity is 1. Hence, p : C, — k* is the trivial homomorphism.



Q: How many simple representations are there?
Let p: G — GL(V) be an arbitrary representation.

A:

e Nonmodular Representations

# of Conjugacy classes = # of iso classes of simples.

e Modular Representations

Let #G = p™r, and k have charp, (p,r) = 1.

# of iso classes of simples = r.

EXAMPLES IN MODULAR REPRESENTATION THEORY

Our setup is as follows:
e k is a field of arbitrary characteristic, p > 0.
e (G is a finite group, #G = n.
One can consider the following cases:
e Case 1: Nonmodular #G € k*
— Strong Nonmodular

— Weak Nonmodular

e Case 2: Modular #G =0 (mod p).



THE TRANSFER HOMOMORPHISM

A basic tool in much of representation theory of finite group is to ”average” with respect to the order of
G. We cannot do this when the characteristic of k divides the order of G. We let H < G and define the

transfer homomorphism

™5 k[V)H — K[V

fr= > g @)=Y flg"a).

gHeG/H gHEG/H
Remark 1.

(1) We're letting the sum run over the representatives of left cosets of H in G.

(2) For H < G, we know that k[V]% < k[V]# as a subalgebra.

Moreover, for every f € k[V]% h € k[V]H with degh > 1
(1) TG (f) =[G Hf
(2) Ty (f - h) = fTu ()
which gives us that Trg is an k[V]%-module homomoprhism. We can consider

el
Trg

kV]¢ —— k[V]# —— K[V]©

which is equivalent to multiplication by [G : H|. Hence, when [G : H] € k*, Trg is surjective.



REYNOLD’S OPERATOR

When [G : H] is invertible in £,

RG(f) = e S0 0+

gHeG/H

is the Reynold’s operator. In this case,
k[V]T = k[V]C @D Ker Rf;

and in particular if h is the trivial subgroup

RY : k[V] — k[V]¢

1
— — € Gg-
=z > geGg-f
is the projection onto the ring of invariants.

Remark 2. If the characteristic of k divides the order of G, then RE is never surjective.

Example 2. Let Fy be the finite field of order 2 and G = C5. Consider the usual representation p : Co —

GLy(Fy) where

and

Note that xy is invaraint, and 22, zy, and y? is a basis for F3[V]s. We now make some computations and

an observation:



T =) g2’ =2+ =D g-v> =T
e geG

TrG(xy):deGg-xy:xy—i—xy:ny:O.

Hence, every degree two form has no xy term. That is zy € Fo[V]$, but xy ¢ Im Tr¢.

Theorem 2 (Feshbach-Derksen). Let p : G — GL, (k) be a representation of a finite group G. If chark

divides #G, then Tr¢ is not surjective.

Proof. Let chark = p > 0, a prime. Since p | #G, there exists h € G such that |h| = p by Cauchy’s theorem.
Define H < G to be the cyclic subgroup generated by h. Let g1,..., gr be a left transversal of H in G. We

know that V# # {0} because #H = p. Choose 0 # v € VH and note that for any f € k[V]

geG
=) (flg™"v)
geG
k p—1
=D flgi'ht )
j=11=0
k
= pflg;*v)
j=1
=0.
Suppose that Tr¢ is surjective. Choose a system of parameters fi,..., f, € k[V]%. Then fi,..., f, is also

a system of parameters in k[V]. Let f € k[V]. There exists Fy,..., F, such that f =>"" | f;F;.

[Finish this proof]



COHEN-MACAULAY

We want to understand a nice property of rings. To be Cohen-Macaulay is to say that the depth and
Krull dimension are equal. We then will take a look at what we know about when the ring of invariants is

Cohen-Macaulay.

Definition 2. Suppose that R = Py, Ra is a graded k-algebra, as usual Ry = k. A set fi1,... f, € R of

homogeneous elements is said to be a homogeneous system of parameters (hsop) if

(1) the f; are algebraically independent.

(2) k[f1,..., fr] € R is module-finite.

Remark 3. Some more definitions:
(1) the fi,..., fr € k[V]Y are primary invariants

(2) k[V]¢ = Fg1+Fga+---+Fgs, where F = k[f1, ..., f.], the g; are said to be the secondary invariants.

Fact: The Noether Normalization Theorem guarantees that invariant rings have a hsop.

Definition 3. Let R be a Noetherian graded ring and M a finitely generated R-module.
(1) A sequence 71,...,7s € R is said to be M-reqular if M/{r1,...,7s(M # 0 and r; is a NZD on
M/{ry,...,ri—1)M.
(2) Let I C R be an ideal, with IM # M. Then depth,;(I) is the maximal length of an M-regular
sequence.

(3) The module M is said to be Cohen-Macaulay if for all maximal ideals m € Supp(M),

depth(My) = dimpg,, (Mn).

Proposition 1. Let R be a Noetherian graded k-algebra with Ry = k. The following are all equivalent:
(1) R is Cohen-Macaulay.
(2) every hsop is R-regular.

(3) If f1,..., fr is an hsop, then R is a free-module over k[f1,..., f+].
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Theorem 3 (Hochster-Eagon). If char(k) does not divide #G, then k[V]¢ is Cohen-Macaulay.

Example 3. Let G = (o) = C), be the cyclic group of order p written multiplicatively, and chark = p > 0.

Consider the action of G on k[xy,x2, x3,y1, Y2, ys] by

o-x;=x; and 0 -y; = x; + y;-

Remark 4.

(1) The z; are invariant by definition of the action.

(2) wij = x;y; — x;y; are invariant 1 < ¢,5 < 3.

One can extend the sequence x1, 2, 3 to a hsop for k[V]%. However,

I

0=z

Y1

shows that 1,29, 3 is not k[V]%-regular because u1z = 1Yo — Tay1 & (w1, 22)k[V]

k[V]¢ is not Cohen-Macaulay.

T2

Z2

Y2

T3

zs3

Y3

= U23T1 — U13T2 + U12T3

G

. We conlcude that



