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1 Modules

We’ve put a lot of time and effort into understanding vector spaces over the fields R and C. With our
introduction to rings, we wonder if we can have some kind of analog to a vector sapce. We introduce
modules and how they are generalizations of vector spaces. In the following discussion, all rings are assumed
to be commutative with 1R, all actions are left-actions, and all modules are unital.

Definition 1. Let R be a ring and M an abelian group. We say that M is a module over the ring R, when

the following axioms hold:

For every m,n ∈M and r, s ∈ R,

1. r(m+ n) = rm+ rn

2. (r + s)m = rm+ sm

3. (r · s)m = r(sm)

4. 1R ·m = m.

There are a whole slew of examples. Perhaps the easiest one for us to understand is a vector space over
a field. An F-module, is a vector space and vice-versa.

Example 1. Let A be an abelian group. We claim that A is a Z-module. Let m ∈ Z and a ∈ A. We define

an operation on A by

Z×A −→ A

(m, a) 7−→
m∑
i=1

a form ≥ 1.

One deals with m < 0 in the obvious way; −1 ·m = −m. Furthermore, 0Z · a = 0. One can show that this

makes A a Z-module. On the other hand, an arbitrary Z-module has an underlying abelian group structure

by definition.
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Example 2. Any ring R is a module over itself by using the usual multiplication in R

R×R −→ R

(r, s) 7−→ r · s

When considering R as an R-module one often writes RR .

Example 3. Let R/I be the quotient ring of R by an ideal I. Then from above we can view R/I as a

module over itself. We can also view R/I as an R-module in the following way:

R×R/I −→ R/I

(r, s+ I) 7−→ (rs) + I

Clearly the elements in the ideal I annihlate R/I.
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2 Submodules

For a subset N ⊆M , we say that N is a submodule of M , denoted N ≤M , if N also has a module structure.

Lemma 1. Let R be a ring, M an R-module, and N ⊆ M . Then N is a submodule of M if and only if

n1 + rn2 ∈ N for every r ∈ R and n1, n2 ∈ N .

Proof. ”⇒” If N is a submodule of M , then n1 + rn2 ∈ N because N is also a module.

”⇐” Suppose n1 + rn2 ∈ N for all r ∈ R and n1, n2 ∈ N . Then taking r to be the unity N is closed

under sums. Letting r = −1R and n1 = n2 one sees that the elements of N have additive inverses in N .

We can now see that N has an additive group structure. Taking n1 = 0 we also see that N is closed under

scalar multiplication.

Lemma 2. Let R be a ring. The submodules of RR are the ideals of R.

Proof. ”⇐” If I is an ideal of R, then x+ y ∈ I and ry ∈ I for every x, y ∈ I and r ∈ R by definition. Hence

x+ ry ∈ I for every x, y ∈ I and r ∈ R, and by the previous lemma I is a submodule.

”⇒” Suppose N is a submodule of RR . Then for n1, n2 ∈ N and r ∈ R, n1 + rn2 ∈ N . Hence, N is

closed under addition and rn ∈ N for each r ∈ R and n ∈ N . We conclude that N is an ideal.

Since M has an underlying abelian group structure, we have no problem forming the quotient group
M/N . We endow M/N with an operation from R by

R×M/N −→M/N

(r, n1 +N) 7−→ (r ·m) +N.

One, of course, needs to assure themselves that the operation is well-defined.
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3 Module Homomorphisms

As always, one wants to understand the morphisms between R-modules.

Definition 2. Let R be a ring and M,N two R-modules. We say that ϕ : M → N is an R-module

homomorphism if for all r ∈ R and m,m′ ∈M

1. ϕ(m+m′) = ϕ(m) + ϕ(m′)

2. ϕ(rm) = rϕ(m)

We saw that I ⊆ R was an ideal if and only if I was the kernel of a ring homomorphism. We sketch a
proof of a similar results for modules.

Proposition 1. A subset N ⊆M is a submodule if and only if it is the kernel of some R-module homomor-

phism.

Proof. (Sketch.)

”⇐” The kernel of a ring homomorphism is a submodule because for r ∈ R and x, y ∈ Kerϕ

• ϕ(rx) = rϕ(x) = 0

• ϕ(x+ y) = ϕ(x) + ϕ(y) = 0 + 0 = 0

”⇒” When N is a submodule of M , N is the kernel of the natural surjection M �M/N .

Theorem 1 (First Isomorphism Theorem). Let M and N be two R-modules and ϕ : M � N a surjective

R-module homomorphism. Then

M/Kerϕ ∼= N

Proof. Define a map

τ : M/Kerϕ −→ N

m+ Kerϕ 7−→ ϕ(m).

Claim: 1. τ is a well-defined map.

Suppose that m and m′ are representatives of the same equivalence class. Then m−m′ ∈ Kerϕ. Hence

ϕ(m−m′) = ϕ(m)− ϕ(m′) = 0 so ϕ(m) = ϕ(m′) as desired.

Claim: 2. τ is an R-module homomorphism

• τ(rm+ Kerϕ) = ϕ(rm) = rϕ(m) = rτ(m+ Kerϕ)

• τ(m+m′ + Kerϕ) = ϕ(m+m′) = ϕ(m) + ϕ(m′) = τ(m+ Kerϕ) + τ(m′ + Kerϕ).
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Claim: 3. τ is a bijection

Let n ∈ N be arbitrary. There exists m ∈ M such that ϕ(m) = n because ϕ is a surjection. Hence

τ(m+ Kerϕ) = n and τ is also a surjection. Furthermore, τ(m+ Kerϕ) = 0 if and only if ϕ(m) = 0 which

implies that m ∈ Kerϕ.
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4 Exact Sequences and Chain Complexes

We now embark on adding a powerful tool to our arsenal. That of the exact sequence. Let Mi, indexed by
i ∈ I, be a collection of R-modules and ϕi : Mi →Mi−1, R-module homomorphisms. The sequence

· · · //Mi+1

ϕi+1 //Mi
ϕi //Mi−1 // · · ·

is said to be exact if Imϕi+1 = Kerϕi.
A short exact sequence (ses) is an exact sequence of the following form

0 //M1
f //M2

g //M3
//0

• Ker f = 0 so f is injective

• Ker(M3 → 0) = M3 = Im g so g is surjective.

We have a straight-forward example of a short exact sequence from quotient modules:

0 //N�
� ι //M

π // //M/N //0

where ι is the inclusion map and π is the canonical projection.
One can work with sequences that are not exact, and attempt to understand how far they are from being

exact, in some sense.

Definition 3. A (chain) complex E• of R-modules is a diagram

· · · //En−1
dn−1

//En
dn //En+1 dn+1

// · · ·

such that di+1 ◦ di = 0. That is Im di ⊆ Ker di+1.

Example 4. An example of a complex is

· · · //Z/8 ·4 //Z/8 ·4 //Z/8 //0

One notes that Ker(Z/8 ·4−→ Z/8) = {2, 4, 6, 0}. Further, Im(Z/8 ·4−→ Z/8) = {4, 0}. Hence, the sequence

is not exact. However, it does satisfy our condition that Im ⊆ Ker.

We mentioned that we can try and measure or determine how far the sequence is from being exact. This
gives rise to the idea of homology.

Definition 4. We define the ith homology by

Hi(E•) =
Ker di

Im di+1
.

For our example,

H0 =
Ker(Z/8 ·4−→ Z/8)

Im(Z/8 ·4−→ Z/8)

∼= Z/2
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5 Shift Operators

We’ve introduced the following structures at this point:

• F[z] - the polynomials in a single variable with coefficients in a field F. This is a PID.

• F[[z]] - the ring of all formal power series in a single variable.

• F(z) - the field of rational functions
F(z) = F[a]⊕ F−(z)

• F((z−1)) - the field of truncated Laurent Series. This is the field of fractions of F[[z−1]].

F((z−1)) = F[z]⊕ z−1F[[z−1]]

We then have the two natural projections

π+ : F((z−1)) F[z]

N∑
−∞

αjz
j

N∑
j=0

αjz
j

//

� //

and
π− : F((z−1)) z−1F[[z−1]]

N∑
−∞

αjz
j

−1∑
−∞

αjz
j

//

� //

We now consider an F((z−1))-linear map over the field F((z−1)). Well,

LA : F((z−1)) −→ F((z−1))

is completely determined by where we send the identity because F((z−1)) is a 1-dimensional F((z−1) vector
space. Hence

(LAf)(z) = A(z)f(z)

for some A(z) ∈ F((z−1)).
We are interested in a particular example of a Laurent operator. We define the shift

S : F((z−1)) −→ F((z−1))

f 7−→ zf

and its inverse

S−1 : F((z−1)) −→ F((z−1))

f 7−→ z−1f

We have the direct sum decomposition
F[z]⊕ z−1F[[z−1]]
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We consider S|F[z] which we denote S+. This works because F[z] is an S-invariant subspace of F((z−1)). We
refer to S+ as the forward shift operator. We would then like a backward shift operator. This operator is
defined

S− : z−1F[[z−1]] −→ z−1F[[z−1]]

f 7−→ π−(zf)

We now outline some properties of S+ and S−:

1. The operator S+ is injective because F[z] is a domain.

2. The operator S+ is not surjective because the image does not contain the constant polynomials.

3. The operator S− is not injective because every element of the form αz−1 is mapped to zero, α ∈ F.

4. The operator S− is surjective. Let g(z) =
∑∞
j=1 αjz

−j is some arbitrary element of z−1F[[z−1]]. Take

f(z) =
∑∞
i=1 βiz

−i where βi+1 = αi. Then

zf(z) = β1 +

∞∑
i=2

βiz
−i+1 = β1 +

∞∑
i=1

αiz
−i

and

π−(zf) =

−1∑
−∞

αjz
j = g(z)

as desired.
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