
Shift Operators

Let’s review what we’ve done in the abstract situation. We are studying linear operators T : V −→ V of

a finite-dimensional vector space V . We defined an F[z]-module structure on V in the following way:

Let p(z) ∈ F[z] be a polynomial written

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0.

Then

p(T ) = anT
n + an−1T

n−1 + · · ·+ a1T + a0I

is a linear operator on V . We define the action of F[z] on V by

p(z) · v = p(T )v.

We denote this F[z]-module by VT .

Since EndF(V ) is an n2-dimensional vector space, the set

{I, T, T 2, . . . , Tn
2−1, Tn

2

}

has n2 + 1 elements and must therefore be linearly dependent. Hence, there exists a set of ai ∈ F, not all of

which are zero, such that

an2Tn
2

+ an2−1T
n2−1 + · · ·+ a1T + a0I = 0

which gives us that T vanishes on the polynomial

an2zn
2

+ an2−1z
n2−1 + · · ·+ a1z + a0.

Define J := {p(z) ∈ F[z] | p(T ) = 0}. The set J is nonempty, and contains a nonzero polynomial, by our

discussion above. One can show that J is an ideal in F[z], and since F[z] is a PID, there exists a polynomial

of minimal degree that generates J . We call this polynomial the minimal polynomial for T .

1 The F[z]-module structure on Xq

We now wish to use the F[z]-module structure on a vector space to study shift operators. Throughout this

discussion, q(z) ∈ F[z] is a monic polynomial of positive degree. The map πq : F[z] −→ F[z] is the ring
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homomorphism with Kerπq = 〈q(z)〉. By the First Isomorphism Theorem,

Imπq ∼=
F[z]

〈q(z)〉
.

We define

Xq = Imπq = {πqf(z) | f(z) ∈ F[z]}

and

Sq : Xq −→ Xq

f 7−→ πq(zf(z)).

This gives us an action z · f = Sqf(z). Notice that for any α ∈ F and f, g ∈ Xq that

Sq(f + αg) = πq(z(f + αg))

= πq(zf + αzg)

= πq(zf) + πq(αzg)

= πq(zf) + απq(zg)

= Sq(f) + αSq(g)

and therefore the operator Sq is F-linear. Now,

zk · f = zk−1(z · f)

= zk−1 · Sq(f)

= zk−1 · S2
q (F )

and one carries on by induction to conclude that zk · f = Skq (f). Hence, for any p(z) ∈ F[z],

p(z) · f(z) = p(Sq)f(z) = πq(p(z))

which gives us the F[z]-module structure on Xq.
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2 A Matrix Representation for Sq

We now proceed to discuss a matrix representation of Sq with respect to the standard basis of Xq. For

0 ≤ i ≤ n− 2,

Sq(z
i) = πq(z

i+1) = zi+1

because i+ 1 < degq(z). However,

Sq(z
n−1) = πq(z

n) = −qn−1z
n−1 − · · · − q1(z)− q0.

Since Sq is a linear transformation, it is completely determined by its values on a basis, we get

C#
q :=



0 0 · · · 0 0 −q0

1 0 · · · 0 0 −q1

0 1 · · · 0 0 −q2

0 0 · · · 0 0 −q3

...
...

...
...

...

0 0 · · · 1 0 −qn−2

0 0 · · · 0 1 −qn−1


.

This is the companion matrix for q(z), and one can show that q(z) is the characteristic polynomial for

C#
q . These companion matrices will form the building blocks for our classification of linear transformations

up to similarity.

Lemma 1. Let q(z) ∈ F[z] be a monic polynomial of degree n ≥ 2.The characteristic polynomial of the

companion matrix C#
q is q(z).

Proof. We induct on the degree of the polynomial. If the degree of q is 2, then we can write q(z) = z2+q1z+q0.

Then

det(zI − C#
q ) =

∣∣∣∣∣∣ z q0

−1 z + q1

∣∣∣∣∣∣
= z(z + q1) + q0

= z2 + q1z + q0

as desired. Now suppose that the statement holds for 2 ≤ k ≤ n− 1. Then
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det(zI − C#
q ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z 0 · · · 0 0 q0

−1 z · · · 0 0 q1

0 −1 · · · 0 0 q2

0 0 · · · 0 0 q3

...
...

...
...

...

0 0 · · · −1 z qn−2

0 0 · · · 0 −1 z + qn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z · · · 0 0 q1

−1 · · · 0 0 q2

0 · · · 0 0 q3

...
...

...
...

0 · · · −1 z qn−2

0 · · · 0 −1 z + qn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0 0 q0

−1 · · · 0 0 q2

0 · · · 0 0 q3

...
...

...
...

0 · · · −1 z qn−2

0 · · · 0 −1 z + qn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= z(q1 + q2z + q3z

2 + · · · qn−2z
n−3 + qn−1z

n−2 + zn−1) + q0

= q(z)

as claimed.
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3 Invariant Subspaces

Having a module structure on Xq, a natural question to ask is: What are the submodules? Suppose that

M ⊆ Xq is an F[z]-submodule. Then for any m1,m2, and p(z) ∈ F[z], m1 + p(z) ·m2 ∈M . That is,

m1 + p(z) ·m2 = m1 + p(Sq)m2 = m1 + πq(p(z)m2) ∈M

which gives us that M is an Sq-invariant subspace. On the other hand, if M is an Sq-invariant subspace,

then it is also an F[z]-submodule. The details are not difficult to produce. Our next proposition classifies

what the Sq-invariant subspaces look like.

Proposition 1. A subspace M ⊆ Xq is Sq-invariant if and only if M = q1Xq2 , for a factorization q(z) =

q1(z)q2(z).

Proof. ”=⇒” Suppose the nontrivial factorization q(z) = q1(z)q2(z) and consider M = q1Xq2 . Let f(z) ∈M ,

and write f(z) = q1(z)f1(z), where deg f1 < deg q2. With respect to q2(z) we have

zf1(z) = a(z)q1(z) + r(z).

Furthermore,

zf(z) = zf1(z)q1(z)

= (a(z)q2(z) + r(z))q1(z)

= a(z)q1(z)q2(z) + q1(z)r(z)

and we have that

Sqf(z) = πq(zf(z))

= q1(z)r(z)

= q1(z)πq2(zf1(z))

= q1(z)Sq2(f1(z)) ∈M.

We conclude that M is Sq-invariant.

Now suppose that M is an Sq-invaraint subspace of Xq. Then there exists M ⊆ F[z] such that M =

π−1
q (M). It is clear that M is closed under addition. Let f ∈M . Then we can write f(z) = f1(z)+a(z)q(z).
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So, zf(z) = zf1(z) + a′(z)q(z) and πq(zf) = Sq(f1) ∈M . We conclude that M is an ideal of F[z]. Let q1 be

the generator for M . It follows that we can write q(z) = q1(z)q2(z) and

M = πq(M) = πq(〈q1(z)〉) = q1Xq2 .

Now that we know what the invariant subspaces are, we would like to understand how Sq behaves when

restricted to an invariant subspace.

Proposition 2. Let q(z) = q1(z)q2(z) be a nontrivial factorization. Then Sq restricted to q1Xq2 is similar

to the shift operator Sq2 .

Proof. Let

Φ : Xq2 −→ q1Xq2

f 7−→ q1f

and observe that this is an isomorphism of the two spaces. For f(z) ∈ Xq2 ,

(Φ ◦ Sq2) = q1Sq2f

= q1πq2(zf)

= πq(zq1f)

= Sq(Φ ◦ f).

We conclude that the following diagram commutes:

Xq2

Sq2

��

Φ // q1Xq2

Sq|q1Xq2

��
Xq2 Φ

// q1Xq2

and since Φ is an isomorphism the statement follows.
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3.1 A Digression: Rewriting πq

Recall that we have the direct sum decomposition

F((z−1)) = F[z]⊕ z−1F[[z−1]]

and π+, π− are the respective canonical projections.

If f(z) ∈ F[z] is a nonzero polynomial, then we can write uniquely

f(z) = a(z)q(z) + r(z)

where deg r < deg q. Well,

q(z)−1f(z) = a(z) + q(z)−1r(z)

and applying π−, we have that

π−q
−1f = π−q

−1r = q−1r.

We conclude that

πqf = qπ−q
−1f.

We will use this to prove our next theorem.

Theorem 1. Let p(z) and q(z) be polynomials with q(z) monic and of positive degree. Define

r(z) = gcd(p, q)

s(z) = lcm(p, q).

We have the factorizations

q(z) = r(z)q1(z)

p(z) = r(z)p1(z)
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with gcd(p1, q1) = 11. Further,

s(z) = r(z)p1(z)q1(z) = p(z)q1(z) = q(z)p1(z).

Moreover,

Ker p(Sq) = q1Xr

Im p(Sq) = rXq1

Proof. That p and q can be factored this way and that gcd(p1, q1) = 1 is a consequence of the fact that

r(z) = gcd(p, q) and that F[z] is a PID.

We know that q1Xr and rXq1 are Sq-invariant subspaces of Xq from our previous discussion.

Suppose that f(z) ∈ q1Xr. Then we can write f(z) = q1(z)g(z) with g ∈ Xr. We compute

p(Sq)f = πq(pf)

= qπ−q
−1pf

= rq1π−r
−1q−1rp1q1g

= rq1π−p1g

= 0

and we conclude that q1Xr ⊆ Ker p(Sq).

Conversely, suppose that f(z) ∈ Ker p(Sq). Then πq(pf) = 0, and there exists g(z) such that p(z)f(z) =

q(z)g(z). This implies that

r(z)p1(z)f(z) = r(z)q1(z)g(z).

By left cancellation, F[z] is a domain,

p1(z)f(z) = q1(z)g(z)

and since gcd(p1, q1) = 1, we can conclude that q1 | f . That is, we can write

f(z) = q1(z)f1(z) for some f1.

1This is notation abuse. To say that two polynomials are coprime, one means that the greatest common divisor is any
nonzero constant polynomial
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Since f ∈ Xq and q(z) = r(z)q1(z), we have that deg f1 < deg r and therefore f1 ∈ Xr. Hence, Ker p(Sq) ⊆

q1Xr. This gives us the equality Ker p(Sq) = q1Xr.

Now assume that g(z) ∈ Im p(Sq). Then there exists f(z) ∈ Xq such that p(Sq)f(z) = g(z). In other

words, πq(p(z)f(z)) = g(z). Then

g(z) = πq(p(z)f(z))

= qπ−q
−1pf

= q1rπ−r
−1q−1rp1f

= q1rπ−q
−1
1 p1f

= rπq1p1f

which is certainly an element of rXq1 .

Now suppose that g ∈ rXq1 . Write g(z) = r(z)g1(z), for some g1 ∈ Xq1 . By the fact that gcd(p1, q1) = 1,

the map f1 7→ πq1p1f1 acting in Xq1 is an invertible map. Hence, there exists f1 ∈ Xq1 such that g1 =

πq1(p1f1). Now,

rg1 = rq1π−r
−1q−1

1 p1rf1 = πqprf1

which implies the desired inclusion.

Theorem 2. With the same setup of the previous theorem, the linear transformation p(Sq) is invertible if

and only if p(z) and q(z) are coprime. Moreover, we have

p(Sq)
−1 = a(Sq),

where the polynomial a(z) arises out of any solution to the Bezout equation

a(z)p(z) + b(z)q(z) = 1.

Proof. Since p(z) and q(z) are coprime, there exist polynomials a(z), b(z) such that

a(z)p(z) + b(z)q(z) = 1.

Then

a(Sq)p(Sq) + b(Sq)q(Sq) = I
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which reduces to a(Sq)p(Sq) = I because the characteristic polynomial of Sq is q(z).

We now embark on proving the biconditional.

Injectivity: Notice that

0 = Ker p(Sq) = q1Xr

if and only if Xr is the trivial subspace. This readily implies that gcd(p, q) = r is a constant polynomial.

Surjectivity: If gcd(p, q) = r is a constant polynomial, then Xq = Xq1 from the factorization q(z) =

r(z)q1(z). On the other hand, if Xq = rXq1 , then we can write zn−1 = r(z)f1(z) where f1 ∈ Xq1 . Then

n− 1 = deg r + deg f1 < deg r + deg q1 = n− 1

and we conclude that deg f1 = deg q1 and deg r = 0. The statement follows.

We end this section with a small fact regarding invariant subspaces.

Lemma 2. Let q(z) be a monic polynomial of positive degree. If q(z) = q1(z)q2(z) = p1(z)p2(z) are two

factorizations, then q1Xq2 ⊆ p1Xp2 if and only if p1 | q1 or q2 | p2.

Proof. Suppose p1 | q1. Then we can write q1(z) = p1(z)s(z), for some polynomial s(z). We have

q(z) = q1(z)q2(z) = p1(z)s(z)q2(z) = p1(z)p2(z)

and in particular p2(z) = s(z)q2(z). This yields

q1Xq2 = p1sXq2 ⊆ p1Xsq2 = p1Xp2 .
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4 Direct Sum Decompositions

Lemma 3. Let q(z) = q1(z)q2(z) be a nontrivial factorization. We have the direct sum decomposition

Xq = Xq1 ⊕ q1Xq2 .

Proof. Note that deg q1 < deg q. This gives us that Xq1 ⊆ Xq. Every element of Xq1 has degree strictly less

than q1 by construction. In a similar vein, every element of q1Xq2 has degree strictly larger than q1. This

gives us that Xq1 ∩ q1Xq2 = {0}. Now,

dimXq = deg q

= deg q1 + deg q2

= dimXq1 + dimXq2

which is the dimension of the direct sum.

Proposition 3. 1. Suppose that s(z) = lcm(pi) and r(z) = gcd(qi). Then

sXr =

s⋂
i=1

piXqi .

2. Suppose that u(z) = lcm(qi) and v(z) = gcd(pi). Then

vXu =

s∑
i=1

piXqi .

Corollary 1. Given a nontrivial factorization q(z) =
s∏
i=1

pi(z)qi(z),

1. The pi(z) are coprime if and only if

Xq = p1Xq1 + p2Xq2 + · · ·+ pxXqs .

2. The sum in (1) is a direct sum if and only if the qi are mutually coprime.

3. We have the direct sum decomposition

Xq = p1Xq1 ⊕ p2Xq2 ⊕ · · · ⊕ psXqs

Linear Algebra 11



Shift Operators

if and only if the qi are mutually coprime and q(z) =
s∏
i=1

qi(z) and pi(z) =
∏
j 6=i

qj(z).

Proof. From the classification of Sq-invariant subspaces, we can represent the sum

p1Xq1 + p2Xq2 + · · ·+ psXqs = rXs

Applying the previous proposition, statement 2, r(z) = gcd(pi) and s(z) = lcm(qi). Hence, rXs = Xq if and

only if r(z) is a constant polynomial, or equivalently s(z) = q(z).

For the second statement, the sum is a direct sum if and only if, for each index i,

piXqi

⋂∑
j 6=i

pjXqj

 = 0.

Since
∑
j 6=i

pjXqj is an invariant subspace, it can be represented as rXs, for two polynomials r(z), s(z) such

that q(z) = r(z)s(z). Now, with r(z) = gcd
j 6=i

(pj) and lcmj 6=i(qj) if and only if gcd(s, qi) = 1. That is, the qi

are mutually coprime.

The third statement follows from the fact that the pi are all coprime by construction and the previous

statements.

Corollary 2. Let p(z) = p1(z)e1p2(z)e2 · · · pk(z)ek be the factorization into irreducibles of the polynomial

p(z). Define si(z) =
∏
j 6=i

pj(z)
ej , 1 ≤ i ≤ k. Then

Xp = s1Xp
e1
1
⊕ s2Xp

e2
2
⊕ · · · ⊕ skXp

ek
k
.

Proof. The gcd(si) = 1 and lcm(peii ) = p(z) by construction. Apply the previous corollary to get the

statement.
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5 Eigenvalues and Eigenvectors

Proposition 4. Let q(z) be a monic polynomial of positive degree. Then

1. The eigenvalues of Sq coincide with the zeros of q(z).

2. The vector f(z) ∈ Xq is an eigenvector for Sq corresponding to an eigenvalue λ if and only if it can be

written

f(z) =
cq(z)

z − λ
.

Proof. Let f(z) be an eigenvector of Sq corresponding to an eigenvalue λ. That is Sqf(z) = λf(z). There

exists some scalar c ∈ F such that

zf − cq = Sqf(z).

Then

zf(z)− cq(z) = λf(z)

and we see that q(λ) = 0.

Conversely, suppose that λ is a zero of q(z). Then (z − λ) | q(z) one sees that

f(z) =
cq(z)

z − λ
∈ Xq.

The computation

(Sq − λI)f(z) = zf − cq(z)− λf(z)

= (z − λ)f(z)− cq(z)

can be applied to obtain the following

(Sq − λI)f(z) = πq(z − λ)
cq(z)

z − λ

= πqcq(z)

= 0

We conclude that f(z) = cq(z)
z−λ is an eigenvector associated to λ.
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6 Cyclic Transformations and Diagonalization

Definition 1. Let V be an n-dimensional vector space over the field F, and T : V −→ V a linear operator.

We say that T is cyclic if there exists v ∈ V such that the set

{v, Tv, T 2v, . . . , Tn−1v}

is a basis for V . The vector v is said to be a cyclic vector for T .

Lemma 4. Let q(z) ∈ F[z] be a monic polynomial of positive degree, and f(z) ∈ Xq. Then

1. Them smallest Sq-invariant subspace of Xq containing f(z) is q1Xq2 , where q(z) = q1(z)q2(z).

2. Sq is a cyclic transformation in Xq.

3. A polynomial f(z) ∈ Xq is a cyclic vector for Sq if and only if f(z) and q(z) are coprime.

Proof. Let M ≤ Xq be the subspace spanned by {Siqf | i ≥ 0}. This space is clearly Sq-invariant and contains

f(z). We’ve seen that such a space must have the form q1Xq2 , for a nontrivial factorization q(z) = q1(z)q2(z).

We conclude that there exists f1 ∈ Xq2 such that f(z) = q1(z)f1(z). Hence, q1 is a divisor of both f and q.

Claim: q1 = gcd(f, q).

Suppose that q0(z) is some common divisor of f(z) and q(z). We can then write q(z) = q0(z)q′(z) and

f(z) = q0(z)f ′(z). Well,

Skq f = πqz
kf = πqz

kq0f
′ = q0πq′z

kf = q0(z)Skq′f(z)

and therefore q1Xq2 ⊆ q0Xq′ which implies that q0 | q1. One concludes that any common divisor divides

q1(z), from which the claim follows.

For the second statement, we know that 1 ∈ Xq. Notice that

Skq 1 = πqz
k · 1 = zk for 0 ≤ k < deg q(z).

Hence, the set

{1, Sq1, S2
q1, . . . , Sn−1

q 1} = {1, z, z2, . . . , zn−1}

is a basis for Xq. We conclude that Sq is a cyclic operator.

To prove the third statement, we note that

dim q1Xq2 = dimXq2 = deg q2.
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Now Xq = q1Xq2 if and only if deg q1(z) = 0. That is, f and g are relatively prime. We’ve implicitly used

the setup of the proof of (1) here.

Proposition 5. Let q(z) be a monic polynomial of positive degree n. Then Sq is diagonalizable if and only

if q(z) splits into the product of n distinct linear factors.

Proof. ”=⇒” Suppose that q(z) splits into n distinct linear factors, q(z) =
n∏
i=1

(z − αi). Define

pi(z) :=
q(z)

z − αi
=
∏
j 6=i

(z − αj)

and recall that the pi, q ≤ i ≤ n, is the spectral basis for Xq. Now, we’ve witnessed that αi is an eigenvalue

of Sq and the eigenvector associated to αi is cq(z)
z−αi

= cpi(z). The computation

(Sq − αiI)(cpi) = Sq(cpi)− αicpi

= cSq(pi)− cαipi

= 0,

which gives us that Sq(pi) = αipi. We’ve now enough to conclude that

[Sq]
sp
sp =


α1

. . .

αn


which is diagonal.

Conversely, suppose that Sq is diagonalizable. Then there exists a basis for which

Sq = diag(α1, α2, . . . , αn).

Because Sq is cyclic its minimal polynomial and characteristic polynomial coincide. It is then necessary that

all of the αi are distinct.
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