Let's review what we've done in the abstract situation. We are studying linear operators $T: V \longrightarrow V$ of a finite-dimensional vector space V. We defined an $\mathbb{F}[z]$ -module structure on V in the following way:

Let $p(z) \in \mathbb{F}[z]$ be a polynomial written

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0.$$

Then

$$p(T) = a_n T^n + a_{n-1} T^{n-1} + \dots + a_1 T + a_0 I$$

is a linear operator on V. We define the action of $\mathbb{F}[z]$ on V by

$$p(z) \cdot v = p(T)v.$$

We denote this $\mathbb{F}[z]$ -module by V_T .

Since $\operatorname{End}_{\mathbb{F}}(V)$ is an n^2 -dimensional vector space, the set

$$\{I, T, T^2, \dots, T^{n^2-1}, T^{n^2}\}$$

has $n^2 + 1$ elements and must therefore be linearly dependent. Hence, there exists a set of $a_i \in \mathbb{F}$, not all of which are zero, such that

$$a_{n^2}T^{n^2} + a_{n^2-1}T^{n^2-1} + \dots + a_1T + a_0I = 0$$

which gives us that T vanishes on the polynomial

$$a_{n^2}z^{n^2} + a_{n^2-1}z^{n^2-1} + \dots + a_1z + a_0$$

Define $J := \{p(z) \in \mathbb{F}[z] \mid p(T) = 0\}$. The set J is nonempty, and contains a nonzero polynomial, by our discussion above. One can show that J is an ideal in $\mathbb{F}[z]$, and since $\mathbb{F}[z]$ is a PID, there exists a polynomial of minimal degree that generates J. We call this polynomial the minimal polynomial for T.

1 The $\mathbb{F}[z]$ -module structure on X_q

We now wish to use the $\mathbb{F}[z]$ -module structure on a vector space to study shift operators. Throughout this discussion, $q(z) \in \mathbb{F}[z]$ is a monic polynomial of positive degree. The map $\pi_q : \mathbb{F}[z] \longrightarrow \mathbb{F}[z]$ is the ring

homomorphism with $\operatorname{Ker} \pi_q = \langle q(z) \rangle.$ By the First Isomorphism Theorem,

$$\operatorname{Im} \pi_q \cong \frac{\mathbb{F}[z]}{\langle q(z) \rangle}$$

We define

$$X_q = \operatorname{Im} \pi_q = \{ \pi_q f(z) \mid f(z) \in \mathbb{F}[z] \}$$

and

$$S_q: X_q \longrightarrow X_q$$
$$f \longmapsto \pi_q(zf(z)).$$

This gives us an action $z \cdot f = S_q f(z)$. Notice that for any $\alpha \in \mathbb{F}$ and $f, g \in X_q$ that

$$S_q(f + \alpha g) = \pi_q(z(f + \alpha g))$$
$$= \pi_q(zf + \alpha zg)$$
$$= \pi_q(zf) + \pi_q(\alpha zg)$$
$$= \pi_q(zf) + \alpha \pi_q(zg)$$
$$= S_q(f) + \alpha S_q(g)$$

and therefore the operator S_q is \mathbb{F} -linear. Now,

$$z^k \cdot f = z^{k-1}(z \cdot f)$$
$$= z^{k-1} \cdot S_q(f)$$
$$= z^{k-1} \cdot S_q^2(F)$$

and one carries on by induction to conclude that $z^k \cdot f = S_q^k(f)$. Hence, for any $p(z) \in \mathbb{F}[z]$,

$$p(z) \cdot f(z) = p(S_q)f(z) = \pi_q(p(z))$$

which gives us the $\mathbb{F}[z]$ -module structure on X_q .

2 A Matrix Representation for S_q

We now proceed to discuss a matrix representation of S_q with respect to the standard basis of X_q . For $0 \le i \le n-2$,

$$S_q(z^i) = \pi_q(z^{i+1}) = z^{i+1}$$

because $i + 1 < \deg q(z)$. However,

$$S_q(z^{n-1}) = \pi_q(z^n) = -q_{n-1}z^{n-1} - \dots - q_1(z) - q_0$$

Since S_q is a linear transformation, it is completely determined by its values on a basis, we get

$$C_q^{\#} := \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 & -q_0 \\ 1 & 0 & \cdots & 0 & 0 & -q_1 \\ 0 & 1 & \cdots & 0 & 0 & -q_2 \\ 0 & 0 & \cdots & 0 & 0 & -q_3 \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & -q^{n-2} \\ 0 & 0 & \cdots & 0 & 1 & -q^{n-1} \end{pmatrix}$$

This is the companion matrix for q(z), and one can show that q(z) is the characteristic polynomial for $C_q^{\#}$. These companion matrices will form the building blocks for our classification of linear transformations up to similarity.

Lemma 1. Let $q(z) \in \mathbb{F}[z]$ be a monic polynomial of degree $n \geq 2$. The characteristic polynomial of the companion matrix $C_q^{\#}$ is q(z).

Proof. We induct on the degree of the polynomial. If the degree of q is 2, then we can write $q(z) = z^2 + q_1 z + q_0$. Then

$$\det(zI - C_q^{\#}) = \begin{vmatrix} z & q_0 \\ -1 & z + q_1 \end{vmatrix}$$
$$= z(z + q_1) + q_0$$
$$= z^2 + q_1 z + q_0$$

as desired. Now suppose that the statement holds for $2 \le k \le n-1$. Then

$$\det(zI - C_q^{\#}) = \begin{vmatrix} z & 0 & \cdots & 0 & 0 & q_0 \\ -1 & z & \cdots & 0 & 0 & q_1 \\ 0 & -1 & \cdots & 0 & 0 & q_2 \\ 0 & 0 & \cdots & 0 & 0 & q_3 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & z & q_{n-2} \\ 0 & 0 & \cdots & 0 & -1 & z + q_{n-1} \end{vmatrix}$$

$$= z \begin{vmatrix} z & \cdots & 0 & 0 & q_1 \\ -1 & \cdots & 0 & 0 & q_2 \\ 0 & \cdots & 0 & 0 & q_3 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & -1 & z & q_{n-2} \\ 0 & \cdots & 0 & -1 & z + q_{n-1} \end{vmatrix} + \begin{vmatrix} 0 & \cdots & 0 & 0 & q_0 \\ -1 & \cdots & 0 & 0 & q_2 \\ 0 & \cdots & 0 & 0 & q_3 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & -1 & z & q_{n-2} \\ 0 & \cdots & 0 & -1 & z + q_{n-1} \end{vmatrix} + \begin{vmatrix} 0 & \cdots & 0 & 0 & q_0 \\ -1 & \cdots & 0 & 0 & q_2 \\ 0 & \cdots & 0 & 0 & q_3 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & -1 & z & q_{n-2} \\ 0 & \cdots & 0 & -1 & z + q_{n-1} \end{vmatrix}$$

$$= z(q_1 + q_2 z + q_3 z^2 + \cdots + q_{n-2} z^{n-3} + q_{n-1} z^{n-2} + z^{n-1}) + q_0$$

$$= q(z)$$

as claimed.

3 Invariant Subspaces

Having a module structure on X_q , a natural question to ask is: What are the submodules? Suppose that $M \subseteq X_q$ is an $\mathbb{F}[z]$ -submodule. Then for any m_1, m_2 , and $p(z) \in \mathbb{F}[z], m_1 + p(z) \cdot m_2 \in M$. That is,

$$m_1 + p(z) \cdot m_2 = m_1 + p(S_q)m_2 = m_1 + \pi_q(p(z)m_2) \in M$$

which gives us that M is an S_q -invariant subspace. On the other hand, if M is an S_q -invariant subspace, then it is also an $\mathbb{F}[z]$ -submodule. The details are not difficult to produce. Our next proposition classifies what the S_q -invariant subspaces look like.

Proposition 1. A subspace $M \subseteq X_q$ is S_q -invariant if and only if $M = q_1 X_{q_2}$, for a factorization $q(z) = q_1(z)q_2(z)$.

Proof. " \Longrightarrow " Suppose the nontrivial factorization $q(z) = q_1(z)q_2(z)$ and consider $M = q_1X_{q_2}$. Let $f(z) \in M$, and write $f(z) = q_1(z)f_1(z)$, where deg $f_1 < \deg q_2$. With respect to $q_2(z)$ we have

$$zf_1(z) = a(z)q_1(z) + r(z).$$

Furthermore,

$$zf(z) = zf_1(z)q_1(z)$$

= $(a(z)q_2(z) + r(z))q_1(z)$
= $a(z)q_1(z)q_2(z) + q_1(z)r(z)$

and we have that

$$S_q f(z) = \pi_q(zf(z))$$

= $q_1(z)r(z)$
= $q_1(z)\pi_{q_2}(zf_1(z))$
= $q_1(z)S_{q_2}(f_1(z)) \in M.$

We conclude that M is S_q -invariant.

Now suppose that \overline{M} is an S_q -invariant subspace of X_q . Then there exists $M \subseteq \mathbb{F}[z]$ such that $M = \pi_q^{-1}(\overline{M})$. It is clear that M is closed under addition. Let $f \in M$. Then we can write $f(z) = f_1(z) + a(z)q(z)$.

So, $zf(z) = zf_1(z) + a'(z)q(z)$ and $\pi_q(zf) = S_q(f_1) \in \overline{M}$. We conclude that M is an ideal of $\mathbb{F}[z]$. Let q_1 be the generator for M. It follows that we can write $q(z) = q_1(z)q_2(z)$ and

$$\overline{M} = \pi_q(M) = \pi_q(\langle q_1(z) \rangle) = q_1 X_{q_2}.$$

Now that we know what the invariant subspaces are, we would like to understand how S_q behaves when restricted to an invariant subspace.

Proposition 2. Let $q(z) = q_1(z)q_2(z)$ be a nontrivial factorization. Then S_q restricted to $q_1X_{q_2}$ is similar to the shift operator S_{q_2} .

Proof. Let

$$\Phi: X_{q_2} \longrightarrow q_1 X_{q_2}$$
$$f \longmapsto q_1 f$$

and observe that this is an isomorphism of the two spaces. For $f(z) \in X_{q_2}$,

$$(\Phi \circ S_{q_2}) = q_1 S_{q_2} f$$
$$= q_1 \pi_{q_2}(zf)$$
$$= \pi_q(zq_1 f)$$
$$= S_q(\Phi \circ f).$$

We conclude that the following diagram commutes:

$$\begin{array}{c|c} X_{q_2} & \xrightarrow{\Phi} q_1 X_{q_2} \\ S_{q_2} \\ \downarrow & \downarrow \\ X_{q_2} & \xrightarrow{\Phi} q_1 X_{q_2} \end{array}$$

and since Φ is an isomorphism the statement follows.

3.1 A Digression: Rewriting π_q

Recall that we have the direct sum decomposition

$$\mathbb{F}((z^{-1})) = \mathbb{F}[z] \oplus z^{-1}\mathbb{F}[[z^{-1}]]$$

and π_+, π_- are the respective canonical projections.

If $f(z) \in \mathbb{F}[z]$ is a nonzero polynomial, then we can write uniquely

$$f(z) = a(z)q(z) + r(z)$$

where $\deg r < \deg q$. Well,

$$q(z)^{-1}f(z) = a(z) + q(z)^{-1}r(z)$$

and applying π_- , we have that

$$\pi_{-}q^{-1}f = \pi_{-}q^{-1}r = q^{-1}r.$$

We conclude that

$$\pi_q f = q \pi_- q^{-1} f.$$

We will use this to prove our next theorem.

Theorem 1. Let p(z) and q(z) be polynomials with q(z) monic and of positive degree. Define

$$r(z) = \gcd(p, q)$$
$$s(z) = \operatorname{lcm}(p, q).$$

We have the factorizations

$$q(z) = r(z)q_1(z)$$
$$p(z) = r(z)p_1(z)$$

with $gcd(p_1, q_1) = 1^1$. Further,

$$s(z) = r(z)p_1(z)q_1(z) = p(z)q_1(z) = q(z)p_1(z)$$

Moreover,

$$\operatorname{Ker} p(S_q) = q_1 X_r$$
$$\operatorname{Im} p(S_q) = r X_{q_1}$$

Proof. That p and q can be factored this way and that $gcd(p_1, q_1) = 1$ is a consequence of the fact that r(z) = gcd(p, q) and that $\mathbb{F}[z]$ is a PID.

We know that q_1X_r and rX_{q_1} are S_q -invariant subspaces of X_q from our previous discussion. Suppose that $f(z) \in q_1X_r$. Then we can write $f(z) = q_1(z)g(z)$ with $g \in X_r$. We compute

$$p(S_q)f = \pi_q(pf)$$

$$= q\pi_-q^{-1}pf$$

$$= rq_1\pi_-r^{-1}q^{-1}rp_1q_1g$$

$$= rq_1\pi_-p_1g$$

$$= 0$$

and we conclude that $q_1X_r \subseteq \operatorname{Ker} p(S_q)$.

Conversely, suppose that $f(z) \in \text{Ker } p(S_q)$. Then $\pi_q(pf) = 0$, and there exists g(z) such that p(z)f(z) = q(z)g(z). This implies that

$$r(z)p_1(z)f(z) = r(z)q_1(z)g(z).$$

By left cancellation, $\mathbb{F}[z]$ is a domain,

$$p_1(z)f(z) = q_1(z)g(z)$$

and since $gcd(p_1, q_1) = 1$, we can conclude that $q_1 \mid f$. That is, we can write

$$f(z) = q_1(z)f_1(z)$$
 for some f_1 .

 $^{^{1}}$ This is notation abuse. To say that two polynomials are coprime, one means that the greatest common divisor is any nonzero constant polynomial

Since $f \in X_q$ and $q(z) = r(z)q_1(z)$, we have that deg $f_1 < \deg r$ and therefore $f_1 \in X_r$. Hence, Ker $p(S_q) \subseteq q_1X_r$. This gives us the equality Ker $p(S_q) = q_1X_r$.

Now assume that $g(z) \in \text{Im } p(S_q)$. Then there exists $f(z) \in X_q$ such that $p(S_q)f(z) = g(z)$. In other words, $\pi_q(p(z)f(z)) = g(z)$. Then

$$g(z) = \pi_q(p(z)f(z))$$

= $q\pi_-q^{-1}pf$
= $q_1r\pi_-r^{-1}q^{-1}rp_1f$
= $q_1r\pi_-q_1^{-1}p_1f$
= $r\pi_{q_1}p_1f$

which is certainly an element of rX_{q_1} .

Now suppose that $g \in rX_{q_1}$. Write $g(z) = r(z)g_1(z)$, for some $g_1 \in X_{q_1}$. By the fact that $gcd(p_1, q_1) = 1$, the map $f_1 \mapsto \pi_{q_1}p_1f_1$ acting in X_{q_1} is an invertible map. Hence, there exists $f_1 \in X_{q_1}$ such that $g_1 = \pi_{q_1}(p_1f_1)$. Now,

$$rg_1 = rq_1\pi_-r^{-1}q_1^{-1}p_1rf_1 = \pi_q prf_1$$

which implies the desired inclusion.

Theorem 2. With the same setup of the previous theorem, the linear transformation $p(S_q)$ is invertible if and only if p(z) and q(z) are coprime. Moreover, we have

$$p(S_q)^{-1} = a(S_q),$$

where the polynomial a(z) arises out of any solution to the Bezout equation

$$a(z)p(z) + b(z)q(z) = 1.$$

Proof. Since p(z) and q(z) are coprime, there exist polynomials a(z), b(z) such that

$$a(z)p(z) + b(z)q(z) = 1.$$

Then

$$a(S_q)p(S_q) + b(S_q)q(S_q) = I$$

which reduces to $a(S_q)p(S_q) = I$ because the characteristic polynomial of S_q is q(z).

We now embark on proving the biconditional.

Injectivity: Notice that

$$0 = \operatorname{Ker} p(S_q) = q_1 X_r$$

if and only if X_r is the trivial subspace. This readily implies that gcd(p,q) = r is a constant polynomial.

Surjectivity: If gcd(p,q) = r is a constant polynomial, then $X_q = X_{q_1}$ from the factorization $q(z) = r(z)q_1(z)$. On the other hand, if $X_q = rX_{q_1}$, then we can write $z^{n-1} = r(z)f_1(z)$ where $f_1 \in X_{q_1}$. Then

$$n-1 = \deg r + \deg f_1 < \deg r + \deg q_1 = n-1$$

and we conclude that $\deg f_1 = \deg q_1$ and $\deg r = 0$. The statement follows.

We end this section with a small fact regarding invariant subspaces.

Lemma 2. Let q(z) be a monic polynomial of positive degree. If $q(z) = q_1(z)q_2(z) = p_1(z)p_2(z)$ are two factorizations, then $q_1X_{q_2} \subseteq p_1X_{p_2}$ if and only if $p_1 \mid q_1$ or $q_2 \mid p_2$.

Proof. Suppose $p_1 \mid q_1$. Then we can write $q_1(z) = p_1(z)s(z)$, for some polynomial s(z). We have

$$q(z) = q_1(z)q_2(z) = p_1(z)s(z)q_2(z) = p_1(z)p_2(z)$$

and in particular $p_2(z) = s(z)q_2(z)$. This yields

$$q_1 X_{q_2} = p_1 s X_{q_2} \subseteq p_1 X_{sq_2} = p_1 X_{p_2}$$

4 Direct Sum Decompositions

Lemma 3. Let $q(z) = q_1(z)q_2(z)$ be a nontrivial factorization. We have the direct sum decomposition

$$X_q = X_{q_1} \oplus q_1 X_{q_2}.$$

Proof. Note that deg $q_1 < \deg q_1$. This gives us that $X_{q_1} \subseteq X_q$. Every element of X_{q_1} has degree strictly less than q_1 by construction. In a similar vein, every element of $q_1X_{q_2}$ has degree strictly larger than q_1 . This gives us that $X_{q_1} \cap q_1X_{q_2} = \{0\}$. Now,

$$\dim X_q = \deg q$$
$$= \deg q_1 + \deg q_2$$
$$= \dim X_{q_1} + \dim X_{q_2}$$

which is the dimension of the direct sum.

Proposition 3. 1. Suppose that $s(z) = \operatorname{lcm}(p_i)$ and $r(z) = \operatorname{gcd}(q_i)$. Then

$$sX_r = \bigcap_{i=1}^s p_i X_{q_i}.$$

2. Suppose that $u(z) = \operatorname{lcm}(q_i)$ and $v(z) = \operatorname{gcd}(p_i)$. Then

$$vX_u = \sum_{i=1}^s p_i X_{q_i}$$

Corollary 1. Given a nontrivial factorization $q(z) = \prod_{i=1}^{s} p_i(z)q_i(z)$,

1. The $p_i(z)$ are coprime if and only if

$$X_q = p_1 X_{q_1} + p_2 X_{q_2} + \dots + p_x X_{q_s}.$$

- 2. The sum in (1) is a direct sum if and only if the q_i are mutually coprime.
- 3. We have the direct sum decomposition

$$X_q = p_1 X_{q_1} \oplus p_2 X_{q_2} \oplus \dots \oplus p_s X_{q_s}$$

if and only if the q_i are mutually coprime and $q(z) = \prod_{i=1}^{s} q_i(z)$ and $p_i(z) = \prod_{j \neq i} q_j(z)$.

Proof. From the classification of S_q -invariant subspaces, we can represent the sum

$$p_1 X_{q_1} + p_2 X_{q_2} + \dots + p_s X_{q_s} = r X_s$$

Applying the previous proposition, statement 2, $r(z) = \text{gcd}(p_i)$ and $s(z) = \text{lcm}(q_i)$. Hence, $rX_s = X_q$ if and only if r(z) is a constant polynomial, or equivalently s(z) = q(z).

For the second statement, the sum is a direct sum if and only if, for each index i,

$$p_i X_{q_i} \bigcap \left(\sum_{j \neq i} p_j X_{q_j} \right) = 0.$$

Since $\sum_{j \neq i} p_j X_{q_j}$ is an invariant subspace, it can be represented as rX_s , for two polynomials r(z), s(z) such that q(z) = r(z)s(z). Now, with $r(z) = \gcd(p_j)$ and $\lim_{j \neq i} (q_j)$ if and only if $\gcd(s, q_i) = 1$. That is, the q_i are mutually coprime.

The third statement follows from the fact that the p_i are all coprime by construction and the previous statements.

Corollary 2. Let $p(z) = p_1(z)^{e_1} p_2(z)^{e_2} \cdots p_k(z)^{e_k}$ be the factorization into irreducibles of the polynomial p(z). Define $s_i(z) = \prod_{j \neq i} p_j(z)^{e_j}, 1 \le i \le k$. Then

$$X_p = s_1 X_{p_1^{e_1}} \oplus s_2 X_{p_2^{e_2}} \oplus \dots \oplus s_k X_{p_k^{e_k}}.$$

Proof. The $gcd(s_i) = 1$ and $lcm(p_i^{e_i}) = p(z)$ by construction. Apply the previous corollary to get the statement.

5 Eigenvalues and Eigenvectors

Proposition 4. Let q(z) be a monic polynomial of positive degree. Then

- 1. The eigenvalues of S_q coincide with the zeros of q(z).
- 2. The vector $f(z) \in X_q$ is an eigenvector for S_q corresponding to an eigenvalue λ if and only if it can be written

$$f(z) = \frac{cq(z)}{z - \lambda}.$$

Proof. Let f(z) be an eigenvector of S_q corresponding to an eigenvalue λ . That is $S_q f(z) = \lambda f(z)$. There exists some scalar $c \in \mathbb{F}$ such that

$$zf - cq = S_q f(z).$$

Then

$$zf(z) - cq(z) = \lambda f(z)$$

and we see that $q(\lambda) = 0$.

Conversely, suppose that λ is a zero of q(z). Then $(z - \lambda) \mid q(z)$ one sees that

$$f(z) = \frac{cq(z)}{z - \lambda} \in X_q.$$

The computation

$$(S_q - \lambda I)f(z) = zf - cq(z) - \lambda f(z)$$
$$= (z - \lambda)f(z) - cq(z)$$

can be applied to obtain the following

$$(S_q - \lambda I)f(z) = \pi_q(z - \lambda)\frac{cq(z)}{z - \lambda}$$
$$= \pi_q cq(z)$$
$$= 0$$

We conclude that $f(z) = \frac{cq(z)}{z-\lambda}$ is an eigenvector associated to λ .

6 Cyclic Transformations and Diagonalization

Definition 1. Let V be an n-dimensional vector space over the field \mathbb{F} , and $T: V \longrightarrow V$ a linear operator. We say that T is *cyclic* if there exists $v \in V$ such that the set

$$\{v, Tv, T^2v, \dots, T^{n-1}v\}$$

is a basis for V. The vector v is said to be a *cyclic vector* for T.

Lemma 4. Let $q(z) \in \mathbb{F}[z]$ be a monic polynomial of positive degree, and $f(z) \in X_q$. Then

- 1. Them smallest S_q -invariant subspace of X_q containing f(z) is $q_1X_{q_2}$, where $q(z) = q_1(z)q_2(z)$.
- 2. S_q is a cyclic transformation in X_q .
- 3. A polynomial $f(z) \in X_q$ is a cyclic vector for S_q if and only if f(z) and q(z) are coprime.

Proof. Let $M \leq X_q$ be the subspace spanned by $\{S_q^i f \mid i \geq 0\}$. This space is clearly S_q -invariant and contains f(z). We've seen that such a space must have the form $q_1 X_{q_2}$, for a nontrivial factorization $q(z) = q_1(z)q_2(z)$. We conclude that there exists $f_1 \in X_{q_2}$ such that $f(z) = q_1(z)f_1(z)$. Hence, q_1 is a divisor of both f and q.

<u>Claim:</u> $q_1 = \operatorname{gcd}(f, q)$.

Suppose that $q_0(z)$ is some common divisor of f(z) and q(z). We can then write $q(z) = q_0(z)q'(z)$ and $f(z) = q_0(z)f'(z)$. Well,

$$S_q^k f = \pi_q z^k f = \pi_q z^k q_0 f' = q_0 \pi_{q'} z^k f = q_0(z) S_{q'}^k f(z)$$

and therefore $q_1X_{q_2} \subseteq q_0X_{q'}$ which implies that $q_0 \mid q_1$. One concludes that any common divisor divides $q_1(z)$, from which the claim follows.

For the second statement, we know that $1 \in X_q$. Notice that

$$S_q^k 1 = \pi_q z^k \cdot 1 = z^k \quad \text{for } 0 \le k < \deg q(z).$$

Hence, the set

$$\{1, S_q 1, S_q^2 1, \dots, S_q^{n-1} 1\} = \{1, z, z^2, \dots, z^{n-1}\}\$$

is a basis for X_q . We conclude that S_q is a cyclic operator.

To prove the third statement, we note that

$$\dim q_1 X_{q_2} = \dim X_{q_2} = \deg q_2.$$

Now $X_q = q_1 X_{q_2}$ if and only if deg $q_1(z) = 0$. That is, f and g are relatively prime. We've implicitly used the setup of the proof of (1) here.

Proposition 5. Let q(z) be a monic polynomial of positive degree n. Then S_q is diagonalizable if and only if q(z) splits into the product of n distinct linear factors.

Proof. " \implies " Suppose that q(z) splits into n distinct linear factors, $q(z) = \prod_{i=1}^{n} (z - \alpha_i)$. Define

$$p_i(z) := \frac{q(z)}{z - \alpha_i} = \prod_{j \neq i} (z - \alpha_j)$$

and recall that the p_i , $q \le i \le n$, is the spectral basis for X_q . Now, we've witnessed that α_i is an eigenvalue of S_q and the eigenvector associated to α_i is $\frac{cq(z)}{z-\alpha_i} = cp_i(z)$. The computation

$$(S_q - \alpha_i I)(cp_i) = S_q(cp_i) - \alpha_i cp_i$$
$$= cS_q(p_i) - c\alpha_i p_i$$
$$= 0,$$

which gives us that $S_q(p_i) = \alpha_i p_i$. We've now enough to conclude that

$$[S_q]_{\rm sp}^{\rm sp} = \begin{pmatrix} \alpha_1 & & \\ & \ddots & \\ & & \alpha_n \end{pmatrix}$$

which is diagonal.

Conversely, suppose that S_q is diagonalizable. Then there exists a basis for which

$$S_q = \operatorname{diag}(\alpha_1, \alpha_2, \dots, \alpha_n).$$

Because S_q is cyclic its minimal polynomial and characteristic polynomial coincide. It is then necessary that all of the α_i are distinct.