
Hardy Spaces

Hardy spaces are function spaces of analytic functions, which are, in some sense, analogs to the Lebesgue

spaces one encounters during a first course in measure theory. The study of Hardy spaces is connected to

many other areas of mathematics: harmonic analysis, Fourier analysis, singular integrals, control theory, and

interpolation problems, just to name a few. Our concern is understanding basic theorems and ideas behind

interpolation problems.

Recall that a Banach Space is a complete normed space and that a Hilbert Space is a complete inner

product space. Every Hilbert space is a Banach space. Since there exist norms that do not arise from an

inner product, there are Banach spaces which are not Hilbert spaces. To say that a space is complete is to

say that every Cauchy sequence converges.

1 Interpolation Problems

The basic idea behind an interpolation problem is to find a function f(z) with a certain set of properties

such that f(zj) = wj for data z1, z2, z3, . . . and w1, w2, w2, . . .. We discuss a few of these types of problems

below.

Interpolation Problem 1 (Lagrange). Given distinct numbers zj ∈ F and another set of arbitrary numbers

wj ∈ F, 1 ≤ j ≤ m, find a polynomial, of degree n or less, such that

p(zj) = wj for all j.

A special situation of this is to produce li(z), again of degree n or less, such that

li(zj) = wj = δij for 1 ≤ i, j ≤ m.

This is an easy problem to solve, and the solution is given by the Lagrange Interpolation polynomials

li(z) =

∏
i 6=j

(z − zj)∏
i6=j

(zi − zj)
.

The Nevanlinna-Pick Interpolation Problem is classic. It was studied by Nevanlinna and Pick indepen-

dently in the early 20th century. It is more sophisticated than our previous example. The setting is now the

open unit disk D in the complex plane.

Interpolation Problem 2 (Nevanlinna-Pick). Given z1, z2, . . . , zn and w1, w2, . . . , wm in the open unit
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disk, under what conditions does there exist an f(z) analytic on D and |f(z)| ≤ 1 for all z ∈ D, such that

f(zj) = wj for all 1 ≤ j ≤ m.

One takes another step in complexity when considering the Carleson Interpolation Problem. A number

of results came out of the study of this problem including the desire to understand H∞ as a Banach algebra.

It was the original impetus for the definition of Carleson measures and the Corona theorem.

Interpolation Problem 3 (Carleson). Suppose that {zj}j∈N is a sequence of distinct complex numbers

in D, does there exist a bounded analytic function f(z) such that f(zj) = wj , for each bounded sequence

{wj}j∈N.

We can recast this statement in the following way. The space `∞ is the space of bounded sequences. For

x ∈ `∞,

‖x‖∞ = sup{|x1| , |x2| , . . . , |xn| , . . .}

one can show that `∞ is a Banach space. We can define a mapping

H∞ −→ `∞

f 7−→ {f(zj)}j∈N

Under what conditions is this mapping surjective?

Fact: Any Carleson sequence {zj}j∈N must satisfy the Blaschke condition

∑
j∈N

(1− |zj |) <∞.
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2 Hardy Spaces

Our setting is the complex plane. One can pursue two theories simultaneously. That which takes place in

a half-plane and that which occurs in the unit disk. One moves seamlessly between these theories without

producing any of the details. This is possible through a conformal mapping of the half-plane and the unit

disk.

For an analytic function in the unit disk, call it f, we say that f ∈ Hp if

sup
0<r<1

∫ 2π

0

∣∣f(reiθ)
∣∣p <∞

which defines a norm ‖·‖p on the space. For p =∞,

‖f‖∞ = sup
0<r<1

|f(z)|

H∞(D) =

f anlaytic on D

∣∣∣∣∣∣ sup
0<r<1

θ∈R

∣∣f(reiθ)
∣∣ <∞


We will be particularly interested in these functions as they are essentially bounded. As one can imagine,

such functions have some nice properties.

The definitions for the upper-half-plane are as follows:

‖f‖pp = sup
y>0

∫ +∞

−∞
|f(x+ iy)|2 dy

Hp(C+) =
{
f analytic on the upper half-plane

∣∣∣ ‖f‖p <∞}
which is a Hilbert space of analytic function on the upper-half-plane.

Q: What happens with these functions on the real axis?

A: A theorem of Fatou guarantees the existence of boundary values on the real axis.

Linear Algebra 3



Hardy Spaces

3 Blaschke Products

We begin with a discussion of infinite products because they will be important to us later. We are familiar

with what it means for a series to converge. In analog, what does it mean for an infinite product
∞∏
n=1

pn to

converge? We define the partial products PN =
N∏
n=1

pn and say that
∞∏
n=1

pn = P if the sequence {pN}∞N=1

converges to P .

If one of the pn is zero, then the idea of having an infinite product is trivial. So, suppose that {pn}n∈N is

a sequence of nonzero complex numbers. Notice that the quotient of the partial products pN+1

pN
= pn. Now,

PN → P implies that lim
n→∞

pn = 1. Hence, a necessary condition for an infinite product to converge is that

the nth-term goes to 1.

In the following discussion, we use the principal branch of the logarithm. Suppose that
∞∑
n=1

log pn is

convergent. Let SN =
N∑
n=1

log pn be the N -th partial sum. By convergence of SN → S, then exp(SN ) →

exp(S). However,

exp(SN ) = exp

(
N∑
n=1

log pn

)

=

N∏
n=1

exp(log pn)

=

N∏
n=1

pn

= PN

and we conclude that PN → exp(S) and
∞∏
n=1

pn = exp(S) 6= 0.

Proposition 1. Let < zn > 0 for all n ≥ 1. Then
N∏
n=1

zn is convergent to a nonzero complex number if and

only if
∞∑
n=1

log zn converges.

In a similar vein,

Proposition 2. Let < zn > −1. Then the series
∞∑
n=1

log(1 + zn) converges absolutely if and only if
∞∑
n=1

zn

converges absolutely.

These ideas enable us to make the proper definition for an infinite product to be convergent.

Definition 1. If < zn > 0 for all n, the infinite product
∞∏
n=1

zn is said to converge absolutely if the series

∞∑
n=1

log zn converges absolutely.
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Now that we know what it means for an infinite product to be convergent, we are able to discuss the

infinite products that are analytic on the unit disk. If {zj}j∈N is a sequence of complex numbers in D, which

are zeros of an f ∈ Hp, then they satisfy the Blaschke condition
∞∑
j=1

(1− |zj |) <∞.

Theorem 1. Let {zj}j∈N be a sequence of points in D which are nonzero and satisfy the Blaschke condition.

Then the Blaschke product

B(z) =

∞∏
j=1

−z̄j
|zj |

z − zj
1− z̄jz

converges on D.

Proof. Define

bj(z) :=
−z̄j
|zj |

z − zj
1− z̄jz

to be an elementary Blaschke factor. Notice that

bj(0) =
−z̄j
|zj |
−zj

1
=
|zj |
|zj |

= 1.

Now, the modulus of an elementary Blaschke factor is

∣∣bj(eiθ)∣∣ =

∣∣eiθ − ρeiγ∣∣
|1− ρe−iγeiθ|

=
∣∣eiθ∣∣ ∣∣1− ρei(γ−θ)∣∣∣∣1− ρei(θ−γ)

∣∣ = 1.

By the maximum modulus principle, we must have that |bj(z)| < 1 for all z ∈ D.

Via some algebra we obtain an identity we will need to show a sketch of why the product converges:

bj(z) =
−z̄j
|zj |

zj − z
1− z̄jz

=
−z̄jzj
|zj |

1− z
zj

1− z̄jz

= −|zj |
2

|zj |
1− z

zj

1− z̄jz

= − |zj |
1− z̄jzj + (z̄j − 1/zj)z

1− z̄jz

= − |zj |

(
1 +

(|zj |2 − 1) zzj
1− z̄jz

)

= − |zj | −
|zj |2 − 1

1− z̄jz
z |zj |
zj
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which gives us that

bj(z) = −1 + (|zj | − 1)

[
−1− |zj |+ 1

1− z̄jz
z |zj |
zj

]
.

The point is that
∞∏
j=1

(bj(z) + 1− 1) converges absolutely if and only if
∞∑
j=1

|1− bj(z)| is finite. Well,

|1− bj(z)| ≤ (1− |zj |) + (1− |zj |)
2 |z|

1− |zj | |z|

and one obtains the convergence from the fact that the sequence {zj}j∈N satisfies the Blaschke condition.

We note that we now know that B(z) is an example of a function in H∞ because it is bounded and

analytic on the open unit disk. A consequence of the Lebesgue Dominated Covergence Theorem is that the

zeros of an f ∈ H∞ satisfy the Blaschke condition. Further, from a theorem of F. Riesz, if f ∈ Hp and not

identically zero, then f(z) = g(z)B(z), where g(z) 6= 0 on the open unit disk and g ∈ Hp and B(z) is a

Blaschke product. That is, we can use Blaschke products to factor out the zeros.
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4 Discussion of Interpolation Problems

We mentioned three interpolation problems in the introduction. We will discuss the last two in this section.

Interpolation Problem 2 (Pick). Suppose that {z1, . . . , zm} is a finite set of distinct points in D. For

which {w1, . . . , wm} does there exist an f , which is analytic on D, such that

f(zj) = wj for 1 ≤ j ≤ m?

One can present a solution to this problem via quadratic forms.

Theorem 2 (Pick). There exists an f : D −→ D, which is analytic, that solves the interpolation problem

above if and only if the quadratic form

Q(t1, . . . , tn) =

n∑
j,k=1

1− wjw̄k
1− zj z̄k

tj t̄k

is nonnegative.

The statement of this theorem is tantamount to stating that the matrix

(
1− w̄jwk
1− z̄jzk

)
j,k=1,...,n

is positive semidefinite.

We get a more ”adequate” or ”best” result if we consider inner functions.

Definition 2. An inner function is a function f ∈ H∞ such that
∣∣f(eiθ)

∣∣ = 1 almost everywhere.

We’ve already encountered an example of an inner function in Blaschke products. Another example of

an inner function are singular integrals

S(z) = exp

(
−
∫ 2π

0

eiθ + z

eiθ − z
dµ(θ)

)
.

The name ”inner function” begs the question: Is there such a thing as an outer function? Yes, but they

will not be important to our discussion.

Definition 3. A function f ∈ Hp is an outer function if g ∈ Hp and
∣∣g(eiθ)

∣∣− ∣∣f(eiθ)
∣∣ almost everywhere

implies that |g(z)| ≤ |f(z)| for all z ∈ D.

We now discuss why inner fuctions are of interest to our situation. Here’s the setup for the following

theorem. Let {zj}j∈N be a sequence of distinct points in D and {wj}j∈N any sequence of complex numbers.
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Supposing there is some f ∈ H∞ that solves the interpolation problem, there is more than one solution in

H∞, when the zj satisfy the Blaschke condition
∑
j∈N

(1− zj) <∞.

In the situation where the sequences are finite, we can solve the interpolation problem with some multiple

of a Blaschke product. Here’s a corollary to Pick’s theorem.

Corollary 1. Suppose the quadratic form Qm is positive semidefinite. Then the interpolating function is a

multiple of a Blaschke product of degree at most m.

Let

B(z) =

∞∏
j=0

z − zj
1− z̄jz

be the Blaschke product with zeros z1, . . . , zm. Suppose there is a solution f0 ∈ H∞ which does the

interpolation. The minimal norm of the function which do the interpolation is given by

inf
g∈H∞

‖f0(z)−B(z)g(z)‖∞ = inf
g∈H∞

∥∥∥B(z)f0(z)− g(z)
∥∥∥
∞

Since B(z)f(z) is continuous on the circle, there exists a unique interpolating function f ∈ H∞ of minimal

norm.

Can we get a result like this in the case when the sequences are infinite? This is where our interest in

inner function comes into play in a serious way.

Theorem 3 (Nevanlinna). If there are two distinct functions of unit norm in H∞ that do the interpolation,

then there is an inner function that does the interpolation.

We now come to the Carleson interpolation problem. We begin with a definition.

Definition 4. A sequence {zj}j∈N in the open unit disk is said to be an interpolating sequence if every

interpolation problem

f(zj) = wj for j ∈ N

with {wj}j∈N bounded has a solution in H∞.

It was with the desire to understand H∞ as a Banach algebra that interpolating sequences were first

considered. We restate Carleson’s interpolation problem in the upper half plane.

Interpolation Problem 3 (Carleson). Let {zj}j∈N be a sequence in the upper half plane. Determine when

every interpolation problem

f(zj) = wj for j ∈ N

with the sequence of wj bounded has a solution f ∈ H∞.
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Notice that if {zj}j∈N is an interpolating sequence, the there is a solution in H∞ for every {aj} in `∞.

Consider,

N = {f ∈ H∞ | f(zj) = 0∀j ∈ N} .

We are uninterested in these functions. Define

T : H∞/N −→ `∞

f 7−→ {f(zj)}j∈N.

It turns out that this is a surjective bounded linear operator when {zj}j∈N is an interpolating sequence.

The following theorem solves the problem, as far as we’re concerned.

Theorem 4. If {zj}j∈N is a sequence in the upper half plane, then the following are equivalent:

1. The sequence is an interpolating sequence.

2. There is δ > 0 such that ∏
j,j 6=k

∣∣∣∣zk − zjzk − z̄j

∣∣∣∣ ≥ δ for k ∈ N.
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5 What’s Going on for Rational Functions?

In Fuhrmann’s book, we concerned ourselves with the space

F((z)) = F[z]⊕ z−1F[[z−1]].

We start with a couple of definitions.

Definition 5.

1. A complex polynomial q(z) is called stable if all its zeros lie in the open upper half-plane.

2. A complex polynomial is called antistable if all its zeros lie in the closed lower half-plane.

Here are the definitions of the function spaces that Fuhrmann is working with in his book.

RL∞ =

{
p(z)

q(z)

∣∣∣∣ p(z), q(z) ∈ C[z],deg p ≤ deg q, q(ζ) 6= 0, ζ ∈ iR
}

RH∞+ =

{
p(z)

q(z)
∈ RL∞

∣∣∣∣ q(z) stable

}

RH∞− =

{
p(z)

q(z)
∈ RL∞

∣∣∣∣ q(z) antistable

}

RL2 =

{
p(z)

q(z)
∈ RL∞

∣∣∣∣ deg p < deg q

}

RH2
+ =

{
p(z)

q(z)
∈ RL2

∣∣∣∣ q(z) stable

}

RH2
− =

{
p(z)

q(z)
∈ RL2

∣∣∣∣ q(z) antistable

}
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We make a note that RL2 is an inner product space. The inner product is given by

〈f, g〉 =
1

2π

∫ +∞

−∞
f(it)g(it) dt

for f, g ∈ RL2. It is a fact from complex analysis that such integrals can be evaluated by using the residue

calculus.

5.1 Intertwining Maps and Interpolation

We begin with a definition of what it means for a map to intertwine a bounded analytic function in this

context. Let m(z) ∈ RH∞+ be an inner funtion and define

H(m) := RH2
+/mRH

2
+.

This quotient makes sense because mRH2
+ is a RH∞+ -submodule of RH2

+.

Definition 6. We say that a map X : H(m) −→ H(m) is an intertwining map if for all Ψ(z) ∈ RH∞+ , we

have that

XTΨ = TΨX.

Recall that intertwining maps are RH∞+ -module homomorphisms in H(m).

Interpolation Problem 4. (for RH∞+ )

1. Given wj ∈ C, and zj ∈ C+, 1 ≤ j ≤ m, find Ψ(z) ∈ RH∞+ such that

Ψ(zj) = wj for i = 1, 2, . . . ,m.

2. Given wj ∈ C and zj ∈ C+, 1 ≤ j ≤ m, find Ψi(z) ∈ RH∞+ for which

Ψi(z) =


0 j 6= i

wj j = i

The statement in (2) is similar to the Lagrange Interpolation Problem that we discussed in the beginning.
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Proposition 3. Given wj ∈ C and zj ∈ C+, 1 ≤ j ≤ m, define

m(z) :=

m∏
j=1

z − zj
z + z̄j

πzj :=
∏
j 6=i

z − zj
z + z̄j

mzj :=
z − zj
z + z̄j

lzj :=
1

z + z̄j

Then

1. There exist solutions Ψj(z) ∈ RH∞+ given by

Ψj(z) = wjπzj (zj)
−1πzj (z)

2. A solution of the interpolation problem is given by

Ψ(z) =

m∑
j=1

wjπzj (zj)
−1πzj (z).

Proposition 4. Given an inner function m(z) ∈ RH∞+ having distinct zeros zj, 1 ≤ j ≤ m, then

1. We have factorizations

m(z) = πzjz)mzj (z).

2. The space H(mzj ) is spanned by the functions lzj (z), and we have

RH2
+ = H(mzj )⊕mzjRH

2
+

3. The set {πzj (z)lzj (z)}mi=1 forms a basis for H(m).

4. A map X : H(m) −→ H(m) is an intertwining map if and only if there exists Ψ(z) ∈ RH∞+ such that

X = TΨ.

5. If Ψ(z) ∈ RH∞+ , we have, for TΨ : H(m) −→ H(m)

‖TΨ‖ ≤ ‖Ψ‖∞ .

These statements give an explicit solution to the stated interpolation problems and give a number of
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equivalent conditions for a map to be an intertwining map. Hence, it is now possible to understand all of the

RH∞+ -module homomorphisms. Furhmann then talks about Higher Order Interpolation Problems. In the

initial setup, he assumes that the zeros of the inner function m(z) are distinct. An appropriate generalization

is made, to deal with the situation where the zeros of m(z) are not distinct.

With little doubt, the convenience of working in rational spaces is that the arguments are easier and

explicit solutions can be given for the interpolation problem. Having discussed the concrete situation we

move to the polar opposite situation to end our discussion.

6 Interpolation on Hilbert Spaces

The setup requires some language from functional analysis. We begin with a domain D in the complex plane.

Let H be the Hilbert space of anlytic functions on D such that point evaluation at z ∈ D gives a bounded

linear functional. Define w(z) to be the norm of that linear functional. We say that a sequence {zj} in D is

a universal interpolating sequence for H if

H −→ `2

f 7−→
{
f(zj)

w(zj)

}

is surjective. This setup is certainly similar to the setup that we had for our discussion of the Carleson

Interpolation Problem.

The theory requires machinery that we don’t have in a hurry. It is difficult to go further into the theory

without the tools of functional analysis. There are other setups for function spaces such as the Paley-Weiner

spaces and Bloch spaces. We mentioned that Carleson studied interpolation sequences in order to study the

underlying structure of H∞. The success of this has led others to ask: Under what circumstances does the

study of universal interpolating sequences reflect the properties of the underlying function space?
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