Theorem 1 (Primary Decomposition Thm.). Let $T: V \to V$ be a linear operator on a finite-dimensional vector space over \mathbb{F} . Let

$$m_T(z) = p_1(z)^{e_1} p_2(z)^{e_2} \cdots p_m(z)^{e_m}$$

be the unique factorization of the minimal polynomial of T into a product of distinct monic prime powers. Then

- 1. $V = U_1 \oplus U_2 \oplus \cdots \oplus U_m$, where $U_j = \operatorname{Ker} p_j(T)^{e_j}$ for $1 \leq j \leq m$.
- 2. The projection of E_j of V on U_j along the sum of the other U_i 's is of the form $q_j(T)$ for some polynomial $q_j(z)$.
- 3. Each of the U_j are T-invariant.
- 4. Any linear operator $V \to V$ that commutes with T carries each U_j to itself.
- 5. Any T-invariant subspace W of V can be written as the direct sum

$$W = (W \cap U_1) \oplus (W \cap U_2) \oplus \cdots \oplus (W \cap U_m).$$

6. The minimal polynomial of T restricted to U_j is $p_j(z)^{e_j}$.

Proof.

(1) & (2) Define $s_j(z) = \frac{m_T(z)}{p_j(z)^{e_j}}$, for $1 \le j \le m$. The ideal in $\mathbb{F}[z]$ generated by $s_1(z), s_2(z), \ldots s_m(z)$ has a single generator d(z) because $\mathbb{F}[z]$ is a PID. By construction of the s_j , no p_j divides d(z). In fact, if d(z) is irreducible then it divides some p_j , but the p_j are prime. We conclude that d(z) is a unit. Hence, there exist polynomials $t_1(z), t_2(z), \ldots, t_m(z)$ such that

$$1 = s_1(z)t_1(z) + s_2(z)t_2(z) + \dots + s_m(z)t_m(z)$$

Define $E_j := s_j(T)t_j(T)$. Then

$$I = E_1 + E_2 + \dots + E_m$$

and

$$E_i E_j = s_i(z) t_i(z) s_j(z) t_j(z)$$
$$= m_T(z) g(z)$$

for some polynomial g(z). We now have that $E_i E_j(T) = m_T(T)g(T) = 0$. This is enough to insure that the E_i are all projections. If $\text{Im } E_j = U_j$, then $V = U_1 \oplus U_2 \oplus \cdots \oplus U_m$.

We need to show that the U_j are as defined in the theorem. That is, we need to show that

$$\operatorname{Im} E_j = \operatorname{Ker} p_j(T)^{e_j}.$$

By construction of the $s_j(z)$, we can write the minimal polynomial

$$m_T(z) = s_j(z)p_j(z)^{e_j}.$$

Hence,

$$p_j(T)^{e_j} E_j = t_j(T) s_j(T) p_j(T)^{e_j}$$
$$= t_j(T) m_T(T)$$
$$= 0.$$

Suppose that $w \in \operatorname{Im} E_j$. Then

$$p_j(T)^{e_j}w = p_j(T)^{e_j}E_jv = 0$$

for some $v \in V$. Hence, $\operatorname{Im} E_j \subseteq \operatorname{Ker} p_j(T)^{e_j}$.

For the reverse inclusion, suppose that $v \in \operatorname{Ker} p_j(T)^{e_j}$. For $i \neq j$,

$$S(z) = s_i(z)t_i(z) = \left(\prod_{r \neq i,j} p_r(z)^{e_r}\right) t_i(z)p_j(z)^{e_j}.$$

The operator S(T) is the projection E_i . We observe that $E_i v = 0$ for all $i \neq j$. We now have that $v = E_j v$ and conclude that $\operatorname{Ker} p_j(T) \subseteq \operatorname{Im} E_j$.

We've proven statements (1) and (2). We now show that these two statements imply the others.

(3) The E_j are all polynomial in T, as we saw in the discussion above. Hence, the E_j commute with T. Then $E_jT(U_j) = TE_j(U_j) = T(U_j)$, but $E_jT(U_j) \subseteq U_j$ so $T(U_j) \subseteq U_j$, and therefore the U_j are T-invariant.

(4) Suppose that $S: V \to V$ is a linear operator which commutes with T. Since each E_j is polynomial in T, each E_j commutes with S. By the same argument given in (3), the U_j are S-invariant.

(5) We first observe that

$$(W \cap U_1) \oplus (W \cap U_2) \oplus \cdots \oplus (W \cap U_m)$$

is certainly contained in W. Suppose $w \in W$. By assuption, W is T-invariant so $Tw \in W$ and $E_jw \in W$ because E_j is polynomial in T. We then write

$$w = E_1 w + E_2 w + \dots + E_m w$$

and because each $E_j w \in U_j$ we conclude that $E_j w \in U_j \cap W$, for $1 \le j \le m$.

(6) Let $m_j(z)$ be the minimal polynomial of T restricted to U_j . Define T_j to be T restricted to U_j . Since $p_j(T)^{e_j}E_j = 0$ on U_j , we have that $p_j(T)^{e_j}$ is the zero operator on U_j . This implies that $m_j(z)$ is some power of $p_j(z)$. Consider the fact that,

$$0 = m_j(T_j)E_j = m_j(T_j)s_j(T_j)r_j(T_j)$$

on U_j . The operator $m_j(T)E_j$ on $U_i = \text{Im } E_i$ when $i \neq j$ is zero on U_i for all $i \neq j$ because $E_jE_i = 0$. We conclude that $m_j(T)E_j$ is identically zero on V. This gives us that $m_T(z)$ divides

$$m_j(z)s_j(z)t_j(z) = m_j(z)\left(1 - \sum_{i \neq j} s_i(z)t_i(z)\right)$$

and therefore $p_j(z)^{e_j}$ divides the right-hand-side. The irreducibility of p_j implies that $p_j^{e_j}$ divides m_j . We conclude that $m_j(z) = p_j(z)^{e_j}$.

1 Cyclic Operators

Consider the operator on \mathbb{C}^3 given by the matrix

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

One can check that the eigenvalues of this matrix are $\lambda = 1$ and $\lambda = 2$. By direct computation, it can be seen that (A - I)(A - 2I) is not the zero matrix. Hence, the characteristic polynomial and the minimal polynomial correspond. We then get the decomposition

$$V_A \cong \frac{\mathbb{F}[z]}{\langle (x-1)^2 \rangle} \oplus \frac{\mathbb{F}[z]}{\langle x-2 \rangle}$$

which is a cyclic $\mathbb{F}[z]$ -module.

2 Examples

Example 1. Consider the matrix

$$M = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

We need to find the eigenvalues of M. That is, we need to find λ such that $(M - \lambda I)$ is not injective.

$$\begin{pmatrix} 1-\lambda & 1 & 1 & 1 \\ 0 & 1-\lambda & 0 & -1 \\ 0 & 0 & 1-\lambda & 1 \\ 0 & 0 & 0 & 1-\lambda \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} = \begin{pmatrix} (1-\lambda)v_1 + v_2 + v_3 + v_4 \\ (1-\lambda)v_2 - v_4 \\ (1-\lambda)v_3 + v_4 \\ (1-\lambda)v_4 \end{pmatrix} = 0.$$

The last is satisfied when $\lambda = 1$ or $v_4 = 0$.

 $\lambda = \mathbf{1}:$

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} = \begin{pmatrix} v_2 + v_3 + v_4 \\ -v_4 \\ v_4 \\ 0 \end{pmatrix}$$

which readily gives us that $v_4 = 0$, $v_2 = -v_3$, and v_1 is free. The eigenspace $E_{\lambda=1}$ is spanned by $(1, 1, -1, 0)^T$ and $(0, 1, -1, 0)^T$. We can directly compute that $(M - I)^2$ is the zero operator. We alwe two possibilities for the Jordan form of M:

Computing the kernels of M - I and $(M - I)^2$:

$$\dim \operatorname{Ker}(M - I) = 2$$
$$\dim \operatorname{Ker}(M - I)^2 = 4$$

which gives us that

of Jordan Blocks that are 1×1 or larger

$$\dim \operatorname{Ker}(M - I) = 2$$

of Jordan Blocs that are 2×2 or larger

$$\dim \text{Ker}(M - I)^2 - \dim \text{Ker}(M - I) = 4 - 2 = 2.$$

Hence, there are two 2×2 Jordan blocks, and we want the first of our possibilities above.

Example 2. Consider the matrix

$$C = \begin{pmatrix} -1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

We need to find the eigenvalues of ${\cal C}$

$$0 = (C - \lambda I)v = \begin{pmatrix} 1 - \lambda & 0 & 0 \\ -1 & 1 - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} (1 - \lambda)v_1 \\ -v_1 + (1 - \lambda)v_2 \\ (1 - \lambda)v_3 \end{pmatrix}$$

which is satisfied when $\lambda = 1$ and $v_1 = 0$.

 $\lambda = 1$:

$$\begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -v_1 \\ 0 \end{pmatrix}$$

which implies that $v_1 = 0$ and the eigenspace $E_{\lambda=1}$ is spanned by $(0, 1, 0)^T$ and $(0, 0, 1)^T$.

Note that $(C - I)^2$ is the zero operator. We have the following for the size of the Jordan blocks.

of Jordan blocks that are 1×1 or larger:

$$\dim \operatorname{Ker}(C - I) = 2$$

of Jordan blocks which are 2×2 or larger:

$$\dim \operatorname{Ker}(C - I)^2 - \dim \operatorname{Ker}(C - I) = 3 - 2 = 1$$

Hence, C is similar to the matrix

3 V as an $\mathbb{F}[z]$ -module

We've been studying linear operators of a finite-dimensional vector space V into itself. We constructed the companion matrix while viewing V as an $\mathbb{F}[z]$ -module. Our setup was as follows:

- $\mathbb F$ is an algebraically closed field.
- $\mathbb{F}[z]$ is the ring of polynomials in a single indeterminate, with coefficients in \mathbb{F} .
- $T: V \to V$ is an linear operator of V that we want to understand.

Theorem 2 (Elementary Divisor Decomposition). Viewing V as an $\mathbb{F}[z]$ -module with respect to the linear operator T, V_T is the direct sum of a finite number of cyclic modules

$$V_T \cong \frac{\mathbb{F}[z]}{p_1^{e_1}} \oplus \frac{\mathbb{F}[z]}{p_2^{e_2}} \oplus \frac{\mathbb{F}[z]}{p_m^{e_m}}$$

where the $p_j^{e_j}$ are positive powers of primes in $\mathbb{F}[z]$, which are not necessarily distinct.

Since \mathbb{F} is algebraically closed, we can assume that each of the p_j take the form $(z - \lambda_j)$, for some $\lambda_j \in \mathbb{F}$. The product of the p_j is the characteristic polynomial. One could then relax the condition that the field \mathbb{F} is algebraically closed to \mathbb{F} containing all of the eigenvalues of T.

Not every matrix is diagonalizable. The motivation for obtaining the Jordan form is to obtain a matrix, similar to the one we're studying, that is as close to diagonal as possible. The linear operator T acting on V is equivalent to z action on the $\mathbb{F}[z]$ -module V_T .

From the elementary divisor form of the decomposition theorem, we need a particularly nice basis for each of the cyclic powers $\mathbb{F}[z]/p_j^{e_j}$. For our situation, we are trying to understand $\mathbb{F}[z]/(z-\lambda)^k$. We know that the standard basis for this vector space is

$$\{1, \bar{z}, \bar{z}^2, \dots, \bar{z}^{k-1}\}.$$

Note that we can write $z = \lambda + (z - \lambda)$. The action of z gives us the following mapping:

$$(\bar{z} - \lambda)^{k-1} \longmapsto \lambda(\bar{z} - \lambda)^{k-1}$$
$$(\bar{z} - \lambda)^{k-2} \longmapsto \lambda(\bar{z} - \lambda)^{k-2} + (\bar{z} - \lambda)^{k-1}$$
$$\vdots$$
$$(\bar{z} - \lambda)^2 \longmapsto \lambda(\bar{z} - \lambda)^2 + (\bar{z} - \lambda)^3$$
$$(\bar{z} - \lambda) \longmapsto \lambda(\bar{z} - \lambda) + (\bar{z} - \lambda)^2$$
$$1 \longmapsto \lambda + (\bar{z} - \lambda)$$

We now have the matrix

$$J_{\lambda,k} = \begin{pmatrix} \lambda & 1 & & & \\ & \lambda & 1 & & \\ & & \lambda & 1 & \\ & & \ddots & \ddots & \\ & & & & \lambda & 1 \\ & & & & & & \lambda \end{pmatrix}$$

١

which is an elementary Jordan block of size k with eigenvalue λ .

Going back to an arbitrary operator T, with characteristic polynomial $c_T(z)$, we can decompose V as an $\mathbb{F}[z]$ -module

$$V_T \cong$$

where $c_T(z) = (z - \lambda_1)^{e_1} (z - \lambda_2)^{e_2} \cdots (z - \lambda_m)^{e_m}$. We repeat, for emphasis, that the λ_j are not necessarily distinct. We can represent T as a block matrix of elementary Jordan blocks

$$\begin{pmatrix} J_{k_1,\lambda_1} & & & \\ & J_{k_2,\lambda_2} & & \\ & & \ddots & \\ & & & J_{k_m,\lambda_m} \end{pmatrix}$$

This matrix is uniquely determined up to permutation of the Jordan blocks.

References

- [1] Sheldon Axler, Linear Algebra Done Right. Springer, 2nd Edition, 1997
- [2] David S. Dummit, Richard M. Foote, Abstract Algebra. John Wiley & Sons, Inc., 3rd Edition, 2004
- [3] Anthony W. Knapp, Basic Algebra. Birkhäuser, 1st edition, 2006