1 Eigenvalues and Eigenvectors

We begin with some initial questions:

- What are the eigenvalues of the derivative matrix?
- Compute the eigenvalues for the matrix

$$T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Remark 1. This is upper triangular and the entries on the diagonal are all the same $\lambda = 1$. The eigenvectors of T are

$$v_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix} \text{ and } \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

So, the eigenspace associated to $\lambda = 1$ is two-dimensional.

• Consider the matrix

$$T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Does this matrix have real eigenvalues? How about complex eigenvalues?

Definition 1. Two matrices $A, B \in \operatorname{Mat}_{n \times n}(\mathbb{F})$ are said to be *similar* if there exists $P \in \operatorname{GL}_n(\mathbb{F})$ such that $A = P^{-1}BP$.

Lemma 1. Similar matrices have the same eigenvalues.

Proof. Let A and B be two similar matrices. Then there exists $P \in GL_n$ such that $A = PBP^{-1}$. Well,

$$det(A - I\lambda) = det(PBP^{-1} - I\lambda)$$
$$= det(P) det(B - I\lambda) det(P^{-1})$$
$$= det(B - I\lambda).$$

The zeros of the polynomial are uniquely determined.

Linear Algebra

1

2 Diagonalization

2.1 Some Examples

Definition 2. Let $T \in \text{End}(V)$. We say that T is *diagonalizable* if there exists a basis of V consisting of eigenvalues of T.

Example 1. The matrix $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ is not diagonalizable as a real operator. This is because

$$\det(A - \lambda I) = \begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 + 1.$$

Example 2. The matrix $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ is diagonalizable. One can easily compute that the eigenvalues are

 $\lambda = 1$ and $\lambda = -1$. One then computes the eigenspaces associated to these values:

$$E_{\lambda=1} = \left\langle \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\rangle \text{ and } E_{\lambda=-1} = \left\langle \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\rangle.$$

Example 3. Diagonalize the matrix in the previous example. Let $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$. We can find P^{-1} by

row operations; $P^{-1} = \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & -1/2 \end{pmatrix}$. Then $P \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} P^{-1} = P \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & -1/2 \end{pmatrix}$ $= P \begin{pmatrix} 1/2 & 0 & -1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix}$ $= \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & -1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix}$ $= \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & -1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix}$ $= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

Some Theoretical Considerations 2.2

Let $T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. We find that its characteristic polynomial is

$$\det(T - \lambda I) = \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 0 & 1 - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^3$$

So its eigenvalue is $\lambda = 1$.

Q: How many power of $1 - \lambda$ do we need to get T to vanish?

A: 2

Example 4. Let $S = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$. We've seen that this is diagonalizable. It has characteristic polynomial

 $p(\lambda) = (\lambda - 1)(1 - \lambda^2)$. One would note that S will vanish on $1 - \lambda^2$.

Proposition 1. If an operator T is diagonalizable then its minimal polynomial splits into distinct linear factors.

Theorem 1. Let V be a finite-dimensional vector space and $T \in End(V)$ and $\lambda \in \mathbb{F}$. The following are all equivalent:

- 1. λ is an eigenvalue for T.
- 2. The operator $T \lambda I$ is singular.
- 3. $\det(T \lambda I) = 0.$

Remark 2. We make the following observation in order to continue our discussion. Suppose that $T \in End(V)$ and $f \in \mathbb{F}[z]$. Then $f(T) \in \text{End}(V)$. It is using this that one obtains an action of the PID $\mathbb{F}[x]$ on a finitedimensional vector space V.

Lemma 2. Suppose that $Tv = \lambda v$. Then $f(T)v = f(\lambda)v$.

Proof. We write $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ and using the remark we want to consider the operator $f(T) = a_n T^n + a_{n-1} T^{n-1} + \dots + a_1 T + a_0 I$. For any given j,

$$a_j T^j v = a_j T^{j-1} \lambda v = a_j \lambda^j v.$$

Using this idea on every monomial and the linearity of T we get the statement.

Theorem 2. Let $T \in \text{End}(V)$ and $\lambda_1, \lambda_2, \ldots, \lambda_k$ the distinct eigenvalues of T. Suppose $W_i = \text{Null}(T - \lambda_i I)$. The following are all equivalent:

- 1. T is diagonalizable.
- 2. The characteristic polynomial of T is $p(x) = (x \lambda_1)^{e_1} \cdots (x \lambda_k)^{e_k}$, where $e_1 + e_2 + \cdots + e_k = \dim V$ and $\dim W_i = e_i$.
- 3. dim $V = \sum_{i=1}^k \dim W_i$.