The basic goal we have is to understand linear operators $T: V \to V$ of a finite-dimensional vector space V. We assume that our vector space is over the field $\mathbb C$. We begin by reviewing ideas that we've considered before in specific examples, and then proceed to the theory of generalized eigenspaces.

1 Review

We present some results that we have seen before.

Theorem 1. Every linear operator of a finite-dimensional vector sapce $T: V \to V$ has an eigenvalue. *Proof.* Suppose that dim $V = n < \infty$ and $T \in \mathcal{L}(V, V)$. Take any $0 \neq v \in V$. The set

$$
\{v, Tv, T^2v, \dots, T^{n-1}v, T^nv\}
$$

is linearly dependent because its cardinality is $n + 1$ and dim $V = n$. Hence, there exist coefficients α_i , not all of which are zero, such that

$$
\alpha_n T^n v + \alpha_{n-1} T^{n-1} v + \dots + \alpha_2 T^2 v, \alpha_1 T v, +\alpha_0 v = 0
$$

and therefore Tv vanishes on the polynomial

$$
p(z) = \alpha_n z^n + \alpha_{n-1} z^{n-1} + \dots + \alpha_2 z^2 + \alpha_1 z + \alpha_0
$$

Since the field of complex numbers is algebraically closed, $p(z)$ splits into linear factors up to a nonzero constant

$$
p(z) = \alpha(z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_m).
$$

We now have that

$$
c(T - \lambda_1 I)(T - \lambda_2 I) \cdots (T - \lambda_m I)v = 0.
$$

This gives us that $T - \lambda_j I$ is not injective for some j. That is, T has an eigenvalue.

 \Box

Proposition 1. Nonzero eigenvectors corresponding to distinct eigenvalues of T are linearly independent.

Proof. Suppose that v_1, \ldots, v_m are eigenvectors of an operator T corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_m$. If v_1, \ldots, v_m are linearly dependent there exist $\alpha_1, \ldots, \alpha_m \in \mathbb{C}$, not all of which are zero, such that

$$
w = \alpha_1 v_1 + \dots + \alpha_m v_m
$$

is the zero vector.

This gives us that

$$
0 = \alpha_1 T v_1 + \dots + \alpha_m T v_m
$$

$$
= \alpha_1 \lambda_1 v_1 + \dots + \alpha_m \lambda_m v_m
$$

The operator
$$
S = \prod_{i \neq j} (T - \lambda_i I) w = \alpha_j v_j = 0
$$
 which yields $\alpha_j = 0$ for all j.

The following example reminds us of the ideal situation where the eigenvectors of the matrix span the vector space.

Example 1. Consider the operator on \mathbb{C}^3 given by the matrix

$$
A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}.
$$

We first wish to produce the eigenvalues for A. We note that if $(A - \lambda I)$ is not injective, then

$$
\begin{pmatrix} 1 - \lambda & 0 & 0 \\ 0 & -\lambda & -2 \\ 0 & 1 & 3 - \lambda \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} (1 - \lambda)v_1 \\ -\lambda v_2 - 2v_3 \\ v_2 + (3 - \lambda)v_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$

which gives us the system

$$
(1 - \lambda)v_1 = 0
$$

$$
-\lambda v_2 - 2v_3 = 0
$$

$$
v_2 + (3 - \lambda)v_3 = 0
$$

The first is satisfied by $\lambda = 1$ or $v_1 = 0$. The second and third is satisfied when $v_2 = v_3 = 0$. Let's see if we can get some mileage from these observations. We discuss them below:

 $\lambda = 1$:

$$
\begin{pmatrix} 0 & 0 & 0 \ 0 & -1 & -2 \ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} v_1 \ v_2 \ v_3 \end{pmatrix} = \begin{pmatrix} 0 \ -v_2 - v_3 \ v_2 + 2v_3 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \ 0 \end{pmatrix}
$$

which gives us the system:

$$
-v_2 - 2v_3 = 0
$$

$$
v_2 + 2v_3 = 0
$$

This implies that $v_2 = v_3 = 0$. Hence, $E_{\lambda=1}$ is spanned by $(1,0,0)^T$ and $(0,-2,1)^T$.

$$
\mathbf{v_1} = \mathbf{0}:
$$

$$
\begin{pmatrix} 1 - \lambda & 0 & 0 \\ 0 & -\lambda & -2 \\ 0 & 1 & 3 - \lambda \end{pmatrix} \begin{pmatrix} 0 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -\lambda v_2 - 2v_3 \\ v_2 + (3 - \lambda)v_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$

yields the system

$$
-\lambda v_2 = 2v_3
$$

$$
v_2 = (\lambda - 3)v_3
$$

Solving for λ , one obtains either $\lambda = 1$ or $\lambda = 2$.

 $\lambda = 2$:

$$
\begin{pmatrix} -1 & 0 & 0 \ 0 & -2 & -2 \ 0 & 1 & 1 \ \end{pmatrix} \begin{pmatrix} v_1 \ v_2 \ v_3 \end{pmatrix} = \begin{pmatrix} -v_1 \ -2v_2 - 2v_3 \ v_2 + v_3 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \ 0 \end{pmatrix}
$$

which gives the system

$$
-v_1 = 0
$$

$$
-2v_2 - 2v_3 = 0
$$

$$
v_2 + v_3 = 0
$$

with solution $v_1 = 0, v_2 = -v_3$. Hence $E_{\lambda=2}$ is spanned by $(0, 1, -1)^T$.

We have the eigenvalues $\lambda = 1$ and $\lambda = 2$. We also see that the eigenvectors span \mathbb{C}^3 .

The eigenspaces are

$$
E_{\lambda=1} = \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix} \right\rangle
$$

$$
E_{\lambda=2} = \left\langle \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \right\rangle.
$$

It isn't difficult to show that these three vectors span \mathbb{C}^3 . In fact,

$$
\mathbb{C}^3 = E_{\lambda=1} \oplus E_{\lambda=2}.
$$

2 Geralized Eigenvectors

Consider the operator on \mathbb{C}^2 given by the matrix

$$
M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
$$

If M has an eigenvector v, then there exists λ such that $v \in \text{Ker}(M - \lambda I)$. Writing $(v_1, v_2)^T$,

$$
\begin{pmatrix} 1 - \lambda & 1 \\ 0 & 1 - \lambda \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} (1 - \lambda)v_1 + v_2 \\ (1 - \lambda)v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

which yields the system

$$
(1 - \lambda)v_1 + v_2 = 0
$$

$$
(1 - \lambda)v_2 = 0
$$

This reduces to $\lambda = 1$ or $v_2 = 0$. Each case is analyzed below:

 $\lambda = 1:$

$$
\begin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \ v_2 \end{pmatrix} = \begin{pmatrix} v_2 \ 0 \end{pmatrix}
$$

which implies that $v_2 = 0$.

 $v_2 = 0$:

$$
\begin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \ 0 \end{pmatrix} = \begin{pmatrix} 1 - \lambda & 1 \ 0 & 1 - \lambda \end{pmatrix} \begin{pmatrix} v_1 \ 0 \end{pmatrix} = \begin{pmatrix} (1 - \lambda)v_1 \ 0 \end{pmatrix}
$$

which implies that $\lambda = 1$.

Hence, the eigenspace $E_{\lambda=1}$ is 1-dimensional and spanned by $(1,0)^T$. Our analysis shows that the eigenvectors do not span V . Such a matrix is said to be *defective*. We wish to find a basis for V related to $M - I$. We note the operator $(M - I)^2$ is the zero operator.

We have $(1,0)^T \in \text{Ker}(M-I)$. Can we get a vector from $\text{Ker}(M-I)^2$ to obtain a basis for V? Well, $\text{Ker}(M-I)^2=V$, so we can take $(0,1)^T$.

Definition 1. Let λ be an eigenvalue for the operator $T: V \to V$. A vector $v \in \text{Ker}(T - \lambda I)^k$, for some $k \in \mathbb{N}$, is said to be a *generalized eigenvector*.

In our example above, $(1,0)^T$ and $(0,1)^T$ form the *generalized eigenspace* for $\lambda = 1$, and the generalized eigenspace is \mathbb{C}^2 .

Example 2. Consider the operator on \mathbb{C}^3 given by the matrix

$$
B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}.
$$

We first with to produce the eigenvalues for B, which occur when the $(B - \lambda I)$ is not injective:

$$
\begin{pmatrix} 1 - \lambda & 1 & 1 \\ 0 & 2 - \lambda & 2 \\ 0 & 0 & 2 - \lambda \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$

which yields the system:

$$
(1 - \lambda)v_1 + v_2 + v_3 = 0
$$

$$
(2 - \lambda)v_2 + 2v_3 = 0
$$

$$
(2 - \lambda)v_3 = 0
$$

Notice that this system is satisfied when $\lambda = 1$ and $v_2 = v_3 = 0$. Another solution is given by $\lambda = 2$ and $v_3 = 0$. Here's the discussion of these two situations:

 $\lambda = 1$:

$$
\begin{pmatrix} 0 & 1 & 1 \ 0 & 1 & 2 \ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \ v_2 \ v_3 \end{pmatrix} = \begin{pmatrix} v_2 + v_3 \ v_2 + 2v_3 \ v_3 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \ 0 \end{pmatrix}
$$

which gives us that $0 = v_2 = v_3$ and v_1 is independent. So, the eigenspace $E_{\lambda=1}$ is spanned by $(1,0,0)^T$.

$$
\lambda = \mathbf{2} \mathbf{:}
$$

$$
\begin{pmatrix} -1 & 1 & 1 \ 0 & 0 & 2 \ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \ v_2 \ v_3 \end{pmatrix} = \begin{pmatrix} -v_1 + v_2 + v_3 \ 2v_3 \ 0 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \ 0 \end{pmatrix}
$$

We see that $v_3 = 0$ and $v_1 = v_2$. So the eigenspace $E_{\lambda=2}$ is spanned by $(1,1,0)^T$. Here we have the situation where the direct sum of the eigenspaces is a proper subspace of \mathbb{C}^3 .

Now, we wish to take a look at $\text{Ker}(B-2I)^3$:

$$
\begin{pmatrix} -1 & 1 & 1 \ 0 & 0 & 2 \ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 1 & -1 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}
$$

which has null space spanned by

$$
(1,1,0)^T
$$
 and $(0,1,-1)^T$.

The generalized eigenspaces are

$$
U_{\lambda=1} = \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle
$$

and

$$
U_{\lambda=2} = \left\langle \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\rangle.
$$

One can check that

$$
\mathbb{C}^3=U_{\lambda=1}\oplus U_{\lambda=2}
$$

This example demonstrates three ideas that come out in the general theory:

- The generalized eigenvectors of T associated to the eigenvalue $\lambda = 2$ equals Ker(T 2I)³.
- \bullet Generalized eigenvectors associated to distinct eigenvalues of T are linearly independent.
- The generalized eigenvectors of T span V .

3 The Theory of Generalized Eigenspaces

Lemma 1. The set of generalized eigenvectors of T corresponding to an eigenvalue λ equals Ker(T – $\lambda I)^n$, where n is the dimension of V .

Proof. Every element of $\text{Ker}(T - \lambda I)^n$ is a generalized eigenvector by definition.

Suppose that $v \in \text{Ker}(T - \lambda I)^k$ for some $k < n$ the least natural number that gets the job done. Consider the set

$$
\{v,(T-\lambda I)v,(T-\lambda I)^2v,\ldots,(T-\lambda I)^{k-1}v\}.
$$

If $\alpha_i \in \mathbb{C}, 1 \leq i \leq k-1$, not all zero, such that $0 = \sum_{k=1}^{k-1}$ $\sum_{m=0} \alpha_i (T - \lambda I)^m v$. Then

$$
0 = (T - \lambda I)^{k-1} \left(\sum_{m=0}^{k-1} (T - \lambda I)^m \right)
$$

$$
= \sum_{m=0}^{k-1} \alpha_i (T - \lambda I)^{k+m-1}
$$

$$
= a_0 (T - \lambda I)^{k-1} v
$$

which implies that $a_0 = 0$.

Applying $(T - \lambda I)^{k-2}$ in this manner we get $\alpha_1 = 0$. Carrying on, we see that $\alpha_i = 0$ for $0 \le i \le k-1$. The statement follows. \Box

Proposition 2. Nonzero generalized eigenvectors corresponding to distinct eigenvalues are linearly independent.

Proof. Suppose that v_1, \ldots, v_m are nonzero generalized eigenvectors of T corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_m$. If the v_i are linearly dependent there exist $\alpha_1, \ldots, \alpha_m \in \mathbb{C}$, not all of which are zero, such that $w = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_m v_m$ is the zero vector.

Let $k \in \mathbb{N}$ be the smallest such that $(T - \lambda I)^k v_1 = 0$. Apply the linear operator

$$
(T - \lambda_1 I)^{k-1} (T - \lambda_2 I)^{\dim V} \cdots (T - \lambda_m I)^{\dim V}
$$

to get

$$
0 = \alpha_1 (T - \lambda_1)^{k-1} (T - \lambda_2 I)^{\dim V} \cdots (T - \lambda_m I)^{\dim V} v_1.
$$

Rewriting the operator

$$
(T - \lambda_2 I)^{\dim V} \cdots (T - \lambda_m I)^{\dim V}
$$

as

$$
((T - \lambda_1 I) + (\lambda_1 - \lambda_2)I)^{\dim V} \cdots ((T - \lambda_1 I) + (\lambda_1 - \lambda_m)I)^{\dim V}
$$

we can expand each factor via the binomial theorem to observe that each term contains some power of $(T - \lambda_1 I)$ except for the term

$$
(\lambda_1 - \lambda_2)^{\dim V} \cdots (\lambda_1 - \lambda_m)^{\dim V} I.
$$

Applying $(T - \lambda_1 I)^{k-1}$ on the left and v_1 to the right gives us zero and the relation

$$
\alpha_1(\lambda_1 - \lambda_2)^{\dim V} \cdots (\lambda_1 - \lambda_m)^{\dim V} (T - \lambda_1 I)^{k-1} v_1 = 0.
$$

This gives us that $\alpha_1 = 0$ due to our choice of k. One can get that $\alpha_j = 0$ for $1 \le j \le m$ in a similar fashion. \Box

Theorem 2. The generalized eigenvectors of T span V .

Proof. The proof will proceed by induction on the dimension of V. The result holds for dim $V = 1$ because every operator $V \to V$ has an eigenvalue. Hence, the associated eigenvector will span the space.

Suppose that dim $V > 1$ and that the result holds for vector spaces of smaller dimension. Let λ be an eigenvalue of T.

Claim: $V = \text{Ker}(T - \lambda I)^{\dim V} \oplus \text{Im}(T - \lambda I)^{\dim V}$.

Suppose V is in the intersetion of the two summands. Then $(T - \lambda I)^{\dim V} = 0$ and there exists $w \in V$ such that $(T - \lambda I)^{\dim V} w = v$. This gives us that

$$
(T - \lambda I)^{2 \dim V} w = (T - \lambda I)v = 0.
$$

That is w is a generalized eigenvector of T. Since the geralized eigenvectors all lie in Ker(T – $\lambda I)^{\dim V}$, we have that

$$
(T - \lambda I)^{\dim V} w = 0
$$

which is impossible since we took v to be nonzero and the image of w . We conclude that the intersection is trivial. The dimensions of the direct summands add up properly as a consequence of the rank-nullity theorem. We've proven the claim.

Because $(T - \lambda I)^{\dim V}$ is not injective by assumption, $\text{Ker}(T - \lambda I)^{\dim V}$ is nontrivial. Further, Im $(T \lambda I$)^{dim V} has dimension strictly less than dim V. Applying the inductive hypothesis, we have that Im (T – $\lambda I)^{\dim V}$ is spaned by the generalized eigenvectors of T restricted to Im $(T - \lambda I)^{\dim V}$. \Box

We end this section with a theorem describing a decomposition of V into generalized eigenspaces. This

will be important in obtaining the Jordan form of a matrix.

Theorem 3. Let $\lambda_1,\ldots,\lambda_m$ be the distinct eigenvalues of an operator T, with $U_{\lambda_1},\ldots,U_{\lambda_m}$ the corresponding generalized eigenspaces. Then

- (a) $V = U_{\lambda_1} \oplus U_{\lambda_2} \oplus \cdots \oplus U_{\lambda_m}$
- (b) Each U_{λ_j} is T-invariant.
- (c) Each $(T \lambda_j I)^{\dim V}$ restricted to U_j is nilpotent.
- (d) For each j, T restricted to U_j has only one eigenvalue, namely λ_j .
- *Proof.* (a) We now that the generalized eigenvectors of T span V. Further, the sum is direct because the generalized eigenvectors associated to distinct eigenvalues are independent.
	- (b) Suppose that $v \in U_{\lambda_j}$. Then there exists some $k \in \mathbb{N}$ such that $(T \lambda_j I)^k v = 0$. We need to show that $Tv \in U_{\lambda_j}$. This follows from

$$
(T - \lambda_j I)^k Tv = T(T - \lambda_j I)^k v = 0
$$

and therefore $Tv \in \text{Ker}(T - \lambda_j)^k$, which implies that $Tv \in U_{\lambda_j}$.

(c) We've seen that

$$
\operatorname{Ker}(T - \lambda_j I)^{\dim V} = U_{\lambda_j}.
$$

This gives us that $(T - \lambda_j I)^{\dim V}$ is the zero operator on U_{λ_j} . The statement follows.

(d) Suppose that $\lambda \neq \lambda_j$ is some eigenvalue of T restricted to U_{λ_j} . Then $v \in U_{\lambda_j}$ gives

$$
(T - \lambda_j I)v = Tv - \lambda_j v
$$

$$
= \lambda v - \lambda_j v
$$

$$
= (\lambda - \lambda_j)v
$$

and we see that

$$
0 = (T - \lambda_j I)^k v = (\lambda - \lambda_j)^k v.
$$

We now have that $\lambda = \lambda_j$ since $v \neq 0$.

 \Box